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Abstract

This paper reviews recent advances and current debates in modeling the solar cycle as a
hydromagnetic dynamo process. Emphasis is placed on (relatively) simple dynamo models
that are nonetheless detailed enough to be comparable to solar cycle observations. After
a brief overview of the dynamo problem and of key observational constraints, we begin by
reviewing the various magnetic field regeneration mechanisms that have been proposed in the
solar context. We move on to a presentation and critical discussion of extant solar cycle models
based on these mechanisms. We then turn to the origin and consequences of fluctuations in
these models, including amplitude and parity modulation, chaotic behavior, intermittency,
and predictability. The paper concludes with a discussion of our current state of ignorance
regarding various key questions relating to the explanatory framework offered by dynamo
models of the solar cycle.
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Dynamo Models of the Solar Cycle 7

1 Introduction

1.1 Scope of review

The cyclic regeneration of the Sun’s large-scale magnetic field is at the root of all phenomena
collectively known as “solar activity”. A near-consensus now exists to the effect that this magnetic
cycle is to be ascribed to the inductive action of fluid motions pervading the solar interior. However,
at this writing nothing resembling consensus exists regarding the detailed nature and relative
importance of various possible inductive flow contributions.

My assigned task, to review “dynamo models of the solar cycle”, is daunting. I will therefore
interpret this task as narrowly as I can get away with. This review will not discuss in any detail
solar magnetic field observations, the physics of magnetic flux tubes and ropes, the generation of
small-scale magnetic field in the Sun’s near-surface layers, hydromagnetic oscillator models of the
solar cycle, or magnetic field generation in stars other than the Sun. Most of these topics are all
worthy of full-length reviews, and do have a lot to bear on “dynamo models of the solar cycle”,
but a line needs to be drawn somewhere. With the exception of recent cycle prediction schemes
based explicitly on dynamo models, I also chose to exclude from consideration the voluminous
literature dealing with prediction of sunspot cycle amplitudes, including the related literature
focusing exclusively on the mathematical modelling of the sunspot number time series, in manner
largely or even sometimes entirely decoupled from the underlying physical mechanisms of magnetic
field generation.

This review thus focuses on the cyclic regeneration of the large-scale solar magnetic field through
the inductive action of fluid flows, as described by various approximations and simplifications of
the partial differential equations of magnetohydrodynamics. Most current dynamo models of the
solar cycle rely heavily on numerical solutions of these equations, and this computational emphasis
is reflected throughout the following pages. Many of the mathematical and physical intricacies
associated with the generation of magnetic fields in electrically conducting astrophysical fluids are
well covered in a few recent reviews (see Hoyng, 2003; Ossendrijver, 2003), and so will not be
addressed in detail in what follows. The focus is on models of the solar cycle, seeking primarily to
describe the observed spatio-temporal variations of the Sun’s large-scale magnetic field.

1.2 What is a “model”?

The review’s very title demands an explanation of what is to be understood by “model”. A model
is a theoretical construct used as thinking aid in the study of some physical system too complex
to be understood by direct inferences from observed data. A model is usually designed with some
specific scientific questions in mind, and asking different questions about a given physical system
will, in all legitimacy, lead to distinct model designs. A well-designed model should be as complex
as it needs to be to answer the questions having motivated its inception, but no more than that.
Throwing everything into a model – usually in the name of “physical realism” – is likely to produce
results as complicated as the data coming from the original physical system under study. Such
model results are doubly damned, as they are usually as opaque as the original physical data, and,
in addition, are not even real-world data!

Nearly all of the solar dynamo models discussed in this review rely on severe simplifications
of the set of equations known to govern the dynamics of the Sun’s turbulent, magnetized fluid
interior. Yet all of them are bona fide models, as defined here.

1.3 A brief historical survey

While regular observations of sunspots go back to the early seventeenth century, and discovery of
the sunspot cycle to 1843, it is the landmark work of George Ellery Hale and collaborators that, in
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the opening decades of the twentieth century, demonstrated the magnetic nature of sunspots and of
the solar activity cycle. In particular, Hale’s celebrated polarity laws established the existence of a
well-organized toroidal magnetic flux system, residing somewhere in the solar interior, as the source
of sunspots. In 1919, Larmor suggested the inductive action of fluid motions as one of a few possible
explanations for the origin of this magnetic field, thus opening the path to contemporary solar
cycle modelling. Larmor’s suggestion fitted nicely with Hale’s polarity laws, in that the inferred
equatorial antisymmetry of the solar internal toroidal fields is precisely what one would expect from
the shearing of a large-scale poloidal magnetic field by an axisymmetric and equatorially symmetric
differential rotation pervading the solar interior. However, two decades later T.S. Cowling placed a
major hurdle in Larmor’s path – so to speak – by demonstrating that even the most general purely
axisymmetric flows could not, in themselves, sustain an axisymmetric magnetic field against Ohmic
dissipation. This result became known as Cowling’s antidynamo theorem.

A way out of this quandary was only discovered in the mid-1950s, when E.N. Parker pointed out
that the Coriolis force could impart a systematic cyclonic twist to rising turbulent fluid elements in
the solar convection zone, and in doing so provide the break of axisymmetry needed to circumvent
Cowling’s theorem (see Figure 1). This groundbreaking idea was put on firm quantitative footing
by the subsequent development of mean-field electrodynamics, which rapidly became the theory
of choice for solar dynamo modelling. By the late 1970s, concensus had almost emerged as to the
fundamental nature of the solar dynamo, and the 𝛼-effect of mean-field electrodynamics was at
the heart of it.

Figure 1: Parker’s view of cyclonic turbulence twisting a toroidal magnetic field (here ribbons pointing
in direction 𝜂) into meridional planes [𝜉, 𝜁] (reproduced from Figure 1 of Parker, 1955).

Serious trouble soon appeared on the horizon, however, and from no less than four distinct
directions. First, it was realized that because of buoyancy effects, magnetic fields strong enough
to produce sunspots could not be stored in the solar convection zone for sufficient lengths of
time to ensure adequate amplification. Second, numerical simulations of turbulent thermally-
driven convection in a thick rotating spherical shell produced magnetic field migration patterns
that looked nothing like what is observed on the Sun. Third, and perhaps most decisive, the
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nascent field of helioseismology succeeded in providing the first determinations of the solar internal
differential rotation, which turned out markedly different from those needed to produce solar-like
dynamo solutions in the context of mean-field electrodynamics. Fourth, the ability of the 𝛼-effect
and magnetic diffusivity to operate as assumed in mean-field electrodynamics was also called into
question by theoretical calculations and numerical simulations.

It is fair to say that solar dynamo modelling has not yet recovered from this four-way punch,
in that nothing remotely resembling concensus currently exists as to the mode of operation of
the solar dynamo. As with all major scientific crises, this situation provided impetus not only
to drastically redesign existing models based on mean-field electrodynamics, but also to explore
new physical mechanisms for magnetic field generation, and resuscitate older potential mecha-
nisms that had fallen by the wayside in the wake of the 𝛼-effect – perhaps most notably the
so-called Babcock–Leighton mechanism, dating back to the early 1960s (see Figure 2). These
post-helioseismic developments, beginning in the mid to late 1980s, are the primary focus of this
review.

Figure 2: The Babcock–Leighton mechanism of poloidal field production from the decay of bipolar active
regions showing opposite polarity patterns in each solar hemisphere (reproduced from Figure 8 of Babcock,
1961).

1.4 Sunspots and the butterfly diagram

Historically, next to cyclic polarity reversal the sunspot butterfly diagram has provided the most
stringent observational constraints on solar dynamo models (see Figure 3). In addition to the
obvious cyclic pattern, two features of the diagram are particularly noteworthy:

� Sunspots are restricted to latitudinal bands some ≃ 30° wide, symmetric about the equator.

� Sunspots emerge closer and closer to the equator in the course of a cycle, peaking in coverage
at about ± 15° of latitude.
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Sunspots appear when deep-seated toroidal flux ropes rise through the convective envelope and
emerge at the photosphere. Assuming that they rise radially and are formed where the magnetic
field is the strongest, the sunspot butterfly diagram can be interpreted as a spatio-temporal “map”
of the Sun’s internal, large-scale toroidal magnetic field component. This interpretation is not
unique, however, since the aforementioned assumptions may be questioned. In particular, we
still lack even rudimentary understanding of the process through which the diffuse, large-scale
solar magnetic field produces the concentrated toroidal flux ropes that will later, upon buoyant
destabilisation, give rise to sunspots. This remains perhaps the most severe missing link between
dynamo models and solar magnetic field observations. On the other hand, the stability and rise of
toroidal flux ropes is now fairly well-understood (see, e.g., Fan, 2009, and references therein).

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
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AVERAGE DAILY SUNSPOT AREA (% OF VISIBLE HEMISPHERE)
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DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

Figure 3: The sunspot “butterfly diagram”, showing the fractional coverage of sunspots as a function of
solar latitude and time (courtesy of D. Hathaway, NASA/MSFC; see http://solarscience.msfc.nasa.

gov/images/bfly.gif).

Magnetographic mapping of the Sun’s surface magnetic field (see Figure 4) have also revealed
that the Sun’s poloidal magnetic component undergoes cyclic variations, changing polarities at
times of sunspot maximum. Note in Figure 4 the poleward drift of the surface fields, away from
sunspot latitudes. This pattern is believed to originate from the transport of magnetic flux re-
leased by the decay of sunspots at low latitudes (see Petrovay and Szakály, 1999, for an alternate
explanation). The surface polar cap flux amounts to about 1022 Mx, while the total unsigned flux
emerging in active regions in the course of a typical cycle adds up to a few 1025 Mx; this is usually
taken to indicate that the solar internal magnetic field is dominated by its toroidal component.
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Figure 4: Synoptic magnetogram of the radial component of the solar surface magnetic field. The low-
latitude component is associated with sunspots. Note the polarity reversal of the high-latitude magnetic
field, occurring approximately at time of sunspot maximum (courtesy of D. Hathaway, NASA/MSFC; see
http://solarscience.msfc.nasa.gov/images/magbfly.jpg).

1.5 Organization of review

The remainder of this review is organized in five sections. In Section 2 the mathematical formula-
tion of the solar dynamo problem is laid out in some detail, together with the various simplifications
that are commonly used in modelling. Section 3 details various possible physical mechanisms of
magnetic field generation. In Section 4, a selection of representative models relying on different
such mechanisms are presented and critically discussed, with abundant references to the techni-
cal literature. Section 5 focuses on the origin of cycle amplitude fluctuations, again presenting
some illustrative model results and reviewing recent literature on the topic. The concluding Sec-
tion 6 offers a somewhat more personal discussion of current challenges and trends in solar dynamo
modelling.

A great many review papers have been and continue to be written on dynamo models of the
solar cycle, and the solar dynamo is discussed in most recent solar physics textbooks, notably Stix
(2002), Foukal (2004), and Schrijver and Siscoe (2009). The series of review articles published in
Proctor and Gilbert (1994) and Ferriz-Mas and Núñez (2003) are also essential reading for more
in-depth reviews of some of the topics covered here. Among the most recent reviews, Petrovay
(2000); Tobias (2002); Rüdiger and Arlt (2003); Usoskin and Mursula (2003); Ossendrijver (2003),
and Brandenburg and Subramanian (2005) offer (in my opinion) particularly noteworthy alternate
and/or complementary viewpoints to those expressed here.
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2 Making a Solar Dynamo Model

2.1 Magnetized fluids and the MHD induction equation

In the interiors of the Sun and most stars, the collisional mean-free path of microscopic constituents
is much shorter than competing plasma length scales, fluid motions are non-relativistic, and the
plasma is electrically neutral and non-degenerate. Under these physical conditions, Ohm’s law
holds, and so does Ampère’s law in its pre-Maxwellian form. Maxwell’s equations can then be
combined into a single evolution equation for the magnetic field B, known as the magnetohydro-
dynamical (MHD) induction equation (see, e.g., Davidson, 2001):

𝜕B

𝜕𝑡
= ∇× (u×B− 𝜂∇×B), (1)

where 𝜂 = 𝑐2/4𝜋𝜎e is the magnetic diffusivity (𝜎e being the electrical conductivity), in general
only a function of depth for spherically symmetric solar/stellar structural models. Of course, the
magnetic field is still subject to the divergence-free condition ∇·B = 0, and an evolution equation
for the flow field u must also be provided. This could be, e.g., the Navier–Stokes equations,
augmented by a Lorentz force term:

𝜕u

𝜕𝑡
+ (u · ∇)u+ 2Ω×u = −1

𝜌
∇𝑝+ g +

1

4𝜋𝜌
(∇×B)×B+

1

𝜌
∇ · 𝜏 , (2)

where 𝜏 is the viscous stress tensor, and other symbols have their usual meaning1. In the most
general circumstances, Equations (1) and (2) must be complemented by suitable equations ex-
pressing conservation of mass and energy, as well as an equation of state. Appropriate initial and
boundary conditions for all physical quantities involved then complete the specification of the prob-
lem. The resulting set of equations defines magnetohydrodynamics, quite literally the dynamics of
magnetized fluids.

2.2 The dynamo problem

The first term on right hand side of Equation (1) represents the inductive action of the flow field,
and it can act as a source term for B; the second term, on the other hand, describes the resistive
dissipation of the current systems supporting the magnetic field, and is thus always a global sink
for B. The relative importances of these two terms is measured by the magnetic Reynolds number
Rm = 𝑢𝐿/𝜂, obtained by dimensional analysis of Equation (1). Here 𝜂, 𝑢, and 𝐿 are “typical”
numerical values for the magnetic diffusivity, flow speed, and length scale over which B varies
significantly. The latter, in particular, is not easy to estimate a priori, as even laminar MHD flows
have a nasty habit of generating their own magnetic length scales (usually ∝ Rm−1/2 at high Rm).
Nonetheless, on length scales comparable to the sun itself, Rm is immense, and so is the usual
viscous Reynolds number. This implies that energy dissipation will occur on length scales very
much smaller than the solar radius.

The dynamo problem consists in finding/producing a (dynamically consistent) flow field u
that has inductive properties capable of sustaining B against Ohmic dissipation. Ultimately, the
amplification of B occurs by stretching of the pre-existing magnetic field. This is readily seen upon
rewriting the inductive term in Equation (1) as

∇× (u×B) = (B · ∇)u− (u · ∇)B−B(∇ · u). (3)

1 Equation (2) is written here in a frame of reference rotating with angular velocity Ω, so that a Coriolis force
term appears explicitly, while the centrifugal force has been subsumed into the gravitational term.
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In itself, the first term on the right hand side of this expression can obviously lead to exponential
amplification of the magnetic field, at a rate proportional to the local velocity gradient.

In the solar cycle context, the dynamo problem is reformulated towards identifying the cir-
cumstances under which the flow fields observed and/or inferred in the Sun can sustain the cyclic
regeneration of the magnetic field associated with the observed solar cycle. This involves more
than merely sustaining the field. A model of the solar dynamo should also reproduce

� cyclic polarity reversals with a ∼ 10 yr half-period,

� equatorward migration of the sunspot-generating deep toroidal field and its inferred strength,

� poleward migration of the diffuse surface field,

� observed phase lag between poloidal and toroidal components,

� polar field strength,

� observed antisymmetric parity,

� predominantly negative (positive) magnetic helicity in the Northern (Southern) solar hemi-
sphere.

At the next level of “sophistication”, a solar dynamo model should also be able to exhibit amplitude
fluctuations, and reproduce (at least qualitatively) the many empirical correlations found in the
sunspot record. These include an anticorrelation between cycle duration and amplitude (Waldmeier
Rule), alternation of higher-than-average and lower-than-average cycle amplitude (Gnevyshev–Ohl
Rule), good phase locking, and occasional epochs of suppressed amplitude over many cycles (the
so-called Grand Minima, of which the Maunder Minimum has become the archetype; more on
this in Section 5 below). One should finally add to the list torsional oscillations in the convective
envelope, with proper amplitude and phasing with respect to the magnetic cycle. This is a very
tall order by any standard.

Because of the great disparity of time- and length scales involved, and the fact that the outer
30% in radius of the Sun are the seat of vigorous, thermally-driven turbulent convective fluid
motions, the solar dynamo problem is very hard to tackle as a direct numerical simulation of the
full set of MHD equations (but do see Section 4.9 below). Most solar dynamo modelling work has
thus relied on simplification – usually drastic – of the MHD equations, as well as assumptions on
the structure of the Sun’s magnetic field and internal flows.

2.3 Kinematic models

A first drastic simplification of the MHD system of equations consists in dropping Equation (2)
altogether by specifying a priori the form of the flow field u. This kinematic regime remained until
relatively recently the workhorse of solar dynamo modelling. Note that with u given, the MHD
induction equation becomes truly linear in B. Moreover, helioseismology (Christensen-Dalsgaard,
2002) has now pinned down with good accuracy two important solar large-scale flow components,
namely differential rotation throughout the interior, and meridional circulation in the outer half
of the solar convection zone (for reviews, see Gizon, 2004; Howe, 2009). Given the low amplitude
of observed torsional oscillations in the solar convective envelope, and the lack of significant cycle-
related changes in the internal solar differential rotation inferred by helioseismology to this date,
the kinematic approximation is perhaps not as bad a working assumption as one may have thought,
at least for the differential rotation part of the mean flow u.
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2.4 Axisymmetric formulation

The sunspot butterfly diagram, Hale’s polarity law, synoptic magnetograms, and the shape of the
solar corona at and around solar activity minimum jointly suggest that, to a tolerably good first
approximation, the large-scale solar magnetic field is axisymmetric about the Sun’s rotation axis,
as well as antisymmetric about the equatorial plane. Under these circumstances it is convenient to
express the large-scale field as the sum of a toroidal (i.e., longitudinal) component and a poloidal
component (i.e., contained in meridional planes), the latter being expressed in terms of a toroidal
vector potential. Working in spherical polar coordinates (𝑟, 𝜃, 𝜑), one writes

B(𝑟, 𝜃, 𝑡) = ∇× (𝐴(𝑟, 𝜃, 𝑡)ê𝜑) +𝐵(𝑟, 𝜃, 𝑡)ê𝜑. (4)

Such a decomposition evidently satisfies the solenoidal constraint ∇ ·B = 0, and substitution into
the MHD induction equation produces two (coupled) evolution equations for 𝐴 and 𝐵, the latter
simply given by the 𝜑-component of Equation (1), and the former, under the Coulomb gauge
∇ ·A = 0, by

𝜕(𝐴ê𝜑)

𝜕𝑡
+ (u · ∇)(𝐴ê𝜑) = 𝜂∇2(𝐴ê𝜑). (5)

2.5 Boundary conditions and parity

The axisymmetric dynamo equations are to be solved in a meridional plane, i.e., 𝑅i ≤ 𝑟 ≤ 𝑅⊙ and
0 ≤ 𝜃 ≤ 𝜋, where the inner radial extent of the domain (𝑅i) need not necessarily extend all the
way to 𝑟 = 0. It is usually assumed that the deep radiative interior can be treated as a perfect
conductor, so that 𝑅i is chosen a bit deeper than the lowest extent of the region where dynamo
action is taking place; the boundary condition at this depth is then simply 𝐴 = 0, 𝜕(𝑟𝐵)/𝜕𝑟 = 0.

It is usually assumed that the Sun/star is surrounded by a vacuum, in which no electrical
currents can flow, i.e., ∇×B = 0; for an axisymmetric B expressed via Equation (4), this requires(︂

∇2 − 1

𝑟2 sin2 𝜃

)︂
𝐴 = 0, 𝐵 = 0, 𝑟/𝑅⊙ > 1. (6)

It is therefore necessary to smoothly match solutions to Equations (1, 5) on solutions to Equa-
tions (6) at 𝑟/𝑅⊙ = 1. Regularity of the solutions demands that 𝐴 = 0 and 𝐵 = 0 on the symmetry
axis (𝜃 = 0 and 𝜃 = 𝜋 in a meridional plane). This completes the specification of the boundary
conditions.

Formulated in this manner, the dynamo solution will spontaneously “pick” its own parity, i.e.,
its symmetry with respect to the equatorial plane. An alternative approach, popular because
it can lead to significant savings in computing time, is to solve only in a meridional quadrant
(0 ≤ 𝜃 ≤ 𝜋/2) and impose solution parity via the boundary condition at the equatorial plane
(𝜋/2):

𝜕𝐴

𝜕𝜃
= 0, 𝐵 = 0 → antisymmetric, (7)

𝐴 = 0,
𝜕𝐵

𝜕𝜃
= 0 → symmetric. (8)
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3 Mechanisms of Magnetic Field Generation

The Sun’s poloidal magnetic component, as measured on photospheric magnetograms, flips polar-
ity near sunspot cycle maximum, which (presumably) corresponds to the epoch of peak internal
toroidal field 𝑇 . The poloidal component 𝑃 , in turn, peaks at time of sunspot minimum. The
cyclic regeneration of the Sun’s full large-scale field can thus be thought of as a temporal sequence
of the form

𝑃 (+) → 𝑇 (−) → 𝑃 (−) → 𝑇 (+) → 𝑃 (+) → . . . , (9)

where the (+) and (−) refer to the signs of the poloidal and toroidal components, as established
observationally. A full magnetic cycle then consists of two successive sunspot cycles. The dynamo
problem can thus be broken into two sub-problems: generating a toroidal field from a pre-existing
poloidal component, and a poloidal field from a pre-existing toroidal component. In the solar case,
the former turns out to be easy, but the latter is not.

3.1 Poloidal to toroidal

Let us begin by expressing the (steady) large-scale flow field u as the sum of an axisymmetric
azimuthal component (differential rotation), and an axisymmetric “poloidal” component up (≡
𝑢𝑟(𝑟, 𝜃)ê𝑟 + 𝑢𝜃(𝑟, 𝜃)ê𝜃), i.e., a flow confined to meridional planes:

u(𝑟, 𝜃) = up(𝑟, 𝜃) +𝜛Ω(𝑟, 𝜃)ê𝜑 (10)

where 𝜛 = 𝑟 sin 𝜃 and Ω is the angular velocity (rad s−1). Substituting this expression into
Equation (5) and into the 𝜑-components of Equation (1) yields

𝜕𝐴

𝜕𝑡
= 𝜂

(︂
∇2 − 1

𝜛2

)︂
𝐴⏟  ⏞  

resistive decay

− up

𝜛
· ∇(𝜛𝐴)⏟  ⏞  

advection

, (11)

𝜕𝐵

𝜕𝑡
= 𝜂

(︂
∇2 − 1

𝜛2

)︂
𝐵⏟  ⏞  

resistive decay

+
1

𝜛

𝜕(𝜛𝐵)

𝜕𝑟

𝜕𝜂

𝜕𝑟⏟  ⏞  
diamagnetic transport

− 𝜛up · ∇
(︂
𝐵

𝜛

)︂
⏟  ⏞  

advection

−𝐵∇ · up⏟  ⏞  
compression

+𝜛(∇× (𝐴ê𝜑)) · ∇Ω⏟  ⏞  
shearing

. (12)

Advection means bodily transport of B by the flow; globally, this neither creates nor destroys
magnetic flux. Resistive decay, on the other hand, destroys magnetic flux and therefore acts as a
sink of magnetic field. Diamagnetic transport can increase B locally, but again this is neither a
source nor sink of magnetic flux. The compression/dilation term is a direct consequence of toroidal
flux conservation in a flow moving across a density gradient. The shearing term in Equation (12),
however, is a true source term, as it amounts to converting rotational kinetic energy into magnetic
energy. This is the needed 𝑃 → 𝑇 production mechanism.

However, there is no comparable source term in Equation (11). No matter what the toroidal
component does, 𝐴 will inexorably decay. Going back to Equation (12), notice now that once 𝐴
is gone, the shearing term vanishes, which means that 𝐵 will in turn inexorably decay. This is
the essence of Cowling’s theorem: An axisymmetric flow cannot sustain an axisymmetric magnetic
field against resistive decay2.

2 Note, however, that an axisymmetric flow can sustain a non-axisymmetric magnetic field against resistive
decay.
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3.2 Toroidal to poloidal

In view of Cowling’s theorem, we have no choice but to look for some fundamentally non-axisymmetric
process to provide an additional source term in Equation (11). It turns out that under solar inte-
rior conditions, there exist various mechanisms that can act as a source of poloidal field. In what
follows we introduce and briefly describe the four classes of such mechanisms that appear most
promising, but defer discussion of their implementation in dynamo models to Section 4, where
illustrative solutions are also presented.

3.2.1 Turbulence and mean-field electrodynamics

The outer∼ 30% of the Sun are in a state of thermally-driven turbulent convection. This turbulence
is anisotropic because of the stratification imposed by gravity, and lacks reflectional symmetry due
to the influence of the Coriolis force. Since we are primarily interested in the evolution of the large-
scale magnetic field (and perhaps also the large-scale flow) on time scales longer than the turbulent
time scale, mean-field electrodynamics offers a tractable alternative to full-blown 3D turbulent
MHD. The idea is to express the net flow and field as the sum of mean components, ⟨u⟩ and ⟨B⟩,
and small-scale fluctuating components u′, B′. This is not a linearization procedure, in that we
are not assuming that |u′|/| ⟨u⟩ | ≪ 1 or |B′|/| ⟨B⟩ | ≪ 1. In the context of the axisymmetric
models to be described below, the averaging (“ ⟨ ⟩”) is most naturally interpreted as a longitudinal
average, with the fluctuating flow and field components vanishing when so averaged, i.e., ⟨u′⟩ = 0
and ⟨B′⟩ = 0. The mean field ⟨B⟩ is then interpreted as the large-scale, axisymmetric magnetic
field usually associated with the solar cycle. Upon this separation and averaging procedure, the
MHD induction equation for the mean component becomes

𝜕⟨B⟩
𝜕𝑡

= ∇× (⟨u⟩ × ⟨B⟩+ ⟨u′ ×B′⟩ − 𝜂∇× ⟨B⟩), (13)

which is identical to the original MHD induction Equation (1) except for the term ⟨u′ ×B′⟩,
which corresponds to a mean electromotive force ℰ induced by the fluctuating flow and field
components. It appears here because, in general, the cross product u′ ×B′ usually will not vanish
upon averaging, even though u′ and B′ do so individually. Evidently, this procedure is meaningful
if a separation of spatial and/or temporal scales exists between the (time-dependent) turbulent
motions and associated small-scale magnetic fields on the one hand, and the (quasi-steady) large-
scale axisymmetric flow and field on the other.

The reader versed in fluid dynamics will have recognized in the mean electromotive force the
equivalent of Reynolds stresses appearing in mean-field versions of the Navier–Stokes equations,
and will have anticipated that the next (crucial!) step is to express ℰ in terms of the mean field
⟨B⟩ in order to achieve closure. This is usually carried out by expressing ℰ as a truncated series
expansion in ⟨B⟩ and its derivatives. Retaining the first two terms yields

ℰ = 𝛼 : ⟨B⟩+ 𝛽 : ∇× ⟨B⟩ . (14)

where the colon indicates a tensorial inner product. The quantities 𝛼 and 𝛽 are in general pseudo-
tensors, and specification of their components requires a turbulence model from which averages
of velocity cross-correlations can be computed, which is no trivial task. We defer discussion of
specific model formulations for these quantities to Section 4.2, but note the following:

� Even if ⟨B⟩ is axisymmetric, the 𝛼-term in Equation (14) will effectively introduce source
terms in both the 𝐴 and 𝐵 equations, so that Cowling’s theorem can be circumvented.

� Parker’s idea of helical twisting of toroidal fieldlines by the Coriolis force corresponds to
a specific functional form for 𝛼, and so finds formal quantitative expression in mean-field
electrodynamics.
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The production of a mean electromotive force proportional to the mean field is called the 𝛼-effect,
and it can as a source of both 𝐴 and 𝐵, and thus offers a viable 𝑇 → 𝑃 mechanism. Its existence
was first demonstrated in the context of turbulent MHD, but it also arises in other contexts, as
discussed immediately below. Although this is arguably a bit of a physical abuse, the term “𝛼-
effect” is used in what follows to denote any mechanism producing a mean poloidal field from a
mean toroidal field, as is almost universally (and perhaps unfortunately) done in the contemporary
solar dynamo literature.

Other forms of turbulent mean electromotive forces are possible when the large-scale magnetic
field develops variations on scales comparable to that of large-scale flows, notably angular velocity
shears (see Rädler et al., 2003; Pipin and Seehafer, 2009, and references therein). This can lead
to the appearance of an additional contribution on the RHS of Equation (14), of the general form
𝛿 × (∇ × ⟨B⟩). Such a mean-field-aligned emf cannot contribute to the sustenance of ⟨B⟩, but
operating concurently with other inductive mechanisms, can in principle contribute to dynamo
action.

3.2.2 Hydrodynamical shear instabilities

The tachocline is the rotational shear layer uncovered by helioseismology immediately beneath the
Sun’s convective envelope, providing smooth matching between the latitudinal differential rotation
of the envelope, and the rigidly rotating radiative core (see, e.g., Spiegel and Zahn, 1992; Brown
et al., 1989; Tomczyk et al., 1995; Charbonneau et al., 1999, and references therein). Stability
analyses of the latitudinal shear within the tachocline carried out in the framework of shallow-water
theory suggest that the latitudinal shear can become unstable when vertical fluid displacement is
allowed (Dikpati and Gilman, 2001). These authors also find that vertical fluid displacements
correlate with the horizontal vorticity pattern in a manner resulting in a net kinetic helicity that
can, in principle, impart a systematic twist to an ambient mean toroidal field. This can thus serve
as a source for the poloidal component, and, in conjunction with rotational shearing of the poloidal
field, lead to cyclic dynamo action. This is a self-excited 𝑇 → 𝑃 mechanism, but it is not entirely
clear at this juncture if (and how) it would operate in the strong-field regime (more on this in
Section 4.5 below).

3.2.3 MHD instabilities

It has now been demonstrated, perhaps even beyond reasonable doubt, that the toroidal magnetic
flux ropes that upon emergence in the photosphere give rise to sunspots can only be stored below
the Sun’s convective envelope, more specifically in the thin, weakly subadiabatic overshoot layer
conjectured to exist immediately beneath the core-envelope interface (see, e.g., Schüssler, 1996;
Schüssler and Ferriz-Mas, 2003; Fan, 2009, and references therein). Only there are growth rates
for the magnetic buoyancy instability sufficiently long to allow field amplification, while being
sufficiently short for flux emergence to take place on time-scales commensurate with the solar cycle
(Ferriz-Mas et al., 1994). These stability studies have also revealed the existence of regions of weak
instability, in the sense that the growth rates are numbered in years. The developing instability is
then strongly influenced by the Coriolis force, and develops in the form of growing helical waves
travelling along the flux rope’s axis. This amounts to twisting a toroidal field in meridional planes,
as with the Parker scenario, with the important difference that what is now being twisted is a
flux rope rather than an individual fieldline. Nonetheless, an azimuthal electromotive force is
produced. This represents a viable 𝑇 → 𝑃 mechanism, but one that can only act above a certain
field strength threshold; in other words, dynamos relying on this mechanism are not self-excited,
since they require strong fields to operate. On the other hand, they operate without difficulties in
the strong field regime.
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Another related class of poloidal field regeneration mechanism is associated with the buoyant
breakup of the magnetized layer (Matthews et al., 1995). Once again it is the Coriolis force that
ends up imparting a net twist to the rising, arching structures that are produced in the course of
the instability’s development (see Thelen, 2000a, and references therein). This results in a mean
electromotive force that peaks where the magnetic field strength varies most rapidly with height.
This could provide yet another form of tachocline 𝛼-effect, again subjected to a lower operating
threshold. MHD versions of the hydrodynamical shear instability discussed in Section 3.2.2 have
also been studied (see, e.g., Arlt et al., 2007b; Cally et al., 2008; Dikpati et al., 2009, and references
therein), but the fundamentally nonlinear nature of the flow-field interaction makes it difficult to
construct physically credible poloidal source terms to be incoporated into dynamo models.

3.2.4 The Babcock–Leighton mechanism

The larger sunspot pairs (“bipolar magnetic regions”, hereafter BMR) often emerge with a sys-
tematic tilt with respect to the E-W direction, in that the leading sunspot (with respect to the
direction of solar rotation) is located at a lower latitude than the trailing sunspot, the more so the
higher the latitude of the emerging BMR. This pattern, known as “Joy’s law”, is caused by the
action of the Coriolis force on the secondary azimuthal flow that develops within the buoyantly
rising magnetic toroidal flux rope that, upon emergence, produces a BMR (see, e.g. Fan et al.,
1993; D’Silva and Choudhuri, 1993; Caligari et al., 1995). In conjunction with the antisymmetry
of the toroidal field giving rise to sunspots evidenced by Hale’s sunspot laws, this tilt is at the
heart of the Babcock–Leighton mechanism for polar field reversal, as outlined in cartoon form in
Figure 2.

Physically, what happens is that the leading spot of the BMR is located closer to the equator,
and therefore experiences greater diffusive cancellation across the equatorial plane with the opposite
polarity leading spots of the other hemisphere, than the trailing spots do. Upon decay, the latter’s
magnetic flux is preferentially transported to the polar region by supergranular diffusion and the
surface meridional flow. The net effect is to take a formerly toroidal magnetic field and convert
a fraction of its associated flux into a net dipole moment, i.e., it represents a 𝑇 → 𝑃 mechanism.
With the polar cap flux amounting to less than 0.1% of the unsigned magnetic flux emerging in
active regions throughout a cycle, the efficiency of this so-called Babcock–Leighton mechanism
needs not be very high. Here again the resulting dynamos are not self-excited, as the required tilt
of the emerging BMR only materializes in a range of toroidal field strength going from a few 104 G
to about 2 Ö 105 G.
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4 A Selection of Representative Models

Each and every one of the 𝑇 → 𝑃 mechanisms described in Section 3.2 relies on fundamentally
non-axisymmetric physical effects, yet these must be “forced” into axisymmetric dynamo equations
for the mean magnetic field. There are a great many different ways of doing so, which explains
the wide variety of dynamo models of the solar cycle to be found in the recent literature. The
aim of this section is to provide representative examples of various classes of models, to highlight
their similarities and differences, and illustrate their successes and failings. In all cases, the model
equations are to be understood as describing the evolution of the mean field ⟨B⟩, namely the
large-scale, axisymmetric component of the total solar magnetic field. Those wishing to code up
their own versions of these (relatively) simple models should take note of the fact that Jouve et al.
(2008) have set up a suite of benchmark calculations against which numerical dynamo solutions
can be validated.

4.1 Model ingredients

All kinematic solar dynamo models have some basic “ingredients” in common, most importantly
(i) a solar structural model, (ii) a differential rotation profile, and (iii) a magnetic diffusivity profile
(possibly depth-dependent).

Helioseismology has pinned down with great accuracy the internal solar structure, including
the internal differential rotation, and the exact location of the core-envelope interface. Unless
noted otherwise, all illustrative models discussed in this section were computed using the following
analytic formulae for the angular velocity Ω(𝑟, 𝜃) and magnetic diffusivity 𝜂(𝑟):

Ω(𝑟, 𝜃)

ΩE
= ΩC +

ΩS(𝜃)− ΩC

2

[︂
1 + erf

(︂
𝑟 − 𝑟c
𝑤

)︂]︂
, (15)

with
ΩS(𝜃) = 1− 𝑎2 cos

2 𝜃 − 𝑎4 cos
4 𝜃, (16)

and
𝜂(𝑟)

𝜂T
= Δ𝜂 +

1−Δ𝜂

2

[︂
1 + erf

(︂
𝑟 − 𝑟c
𝑤

)︂]︂
. (17)

With appropriately chosen parameter values, Equation (15) describes a solar-like differential ro-
tation profile, namely a purely latitudinal differential rotation in the convective envelope, with
equatorial acceleration and smoothly matching a core rotating rigidly at the angular speed of
the surface mid-latitudes3. This rotational transition takes place across a spherical shear layer of
half-thickness 𝑤 coinciding with the core-envelope interface at 𝑟c/𝑅⊙ = 0.7 (see Figure 5, with
parameter values listed in caption). As per Equation (17), a similar transition takes place with the
net diffusivity, falling from some large, “turbulent” value 𝜂T in the envelope to a much smaller dif-
fusivity 𝜂c in the convection-free radiative core, the diffusivity contrast being given by Δ𝜂 = 𝜂c/𝜂T.
Given helioseismic constraints, these represent minimal yet reasonably realistic choices.

It should be noted already that such a solar-like differential rotation profile is quite complex
from the point of view of dynamo modelling, in that it is characterized by three partially overlapping
shear regions: a strong positive radial shear in the equatorial regions of the tachocline, an even
stronger negative radial shear in its the polar regions, and a significant latitudinal shear throughout
the convective envelope and extending partway into the tachocline. As shown in panel B of Figure 5,

3 Helioseismology has also revealed the existence of a significant radial shear in the outermost layers of the
solar convective envelope. Even if the storage problem could be somehow bypassed, it does not appear possible to
construct a viable solar dynamo model relying exclusively on this angular velocity gradient (see, e.g., Dikpati et al.,
2002; Brandenburg, 2005, for illustrative calculations).
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for a tachocline of half-thickness 𝑤/𝑅⊙ = 0.05, the mid-latitude latitudinal shear at 𝑟/𝑅⊙ = 0.7
is comparable in magnitude to the equatorial radial shear; its potential contribution to dynamo
action should not be casually dismissed.

Figure 5: Isocontours of angular velocity generated by Equation (15), with parameter values 𝑤/𝑅 = 0.05,
ΩC = 0.8752, 𝑎2 = 0.1264, 𝑎4 = 0.1591 (Panel A). The radial shear changes sign at colatitude 𝜃 = 55∘.
Panel B shows the corresponding angular velocity gradients, together with the total magnetic diffusivity
profile defined by Equation (17) (dash-dotted line). The core-envelope interface is located at 𝑟/𝑅⊙ = 0.7
(dotted lines).
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4.2 𝛼Ω mean-field models

4.2.1 Calculating the 𝛼-effect and turbulent diffusivity

Mean-field electrodynamics is a subject well worth its own full-length review, so the foregoing
discussion will be limited to the bare essentials. Detailed discussion of the topic can be found in
Krause and Rädler (1980), Moffatt (1978), and Rüdiger and Hollerbach (2004), and in the recent
review articles by Ossendrijver (2003) and Hoyng (2003).

The task at hand is to calculate the components of the 𝛼 and 𝛽 tensor in terms of the statistical
properties of the underlying turbulence. A particularly simple case is that of homogeneous, weakly
anisotropic turbulence, which reduces the 𝛼 and 𝛽 tensor to simple scalars, so that the mean
electromotive force becomes

ℰ = 𝛼 ⟨B⟩ − 𝜂T∇× ⟨B⟩ . (18)

This is the form commonly used in solar dynamo modelling, even though turbulence in the solar
interior is most likely inhomogeneous and anisotropic. Moreover, hiding in the above expressions
is the assumption that the small-scale magnetic Reynolds number 𝑣ℓ/𝜂 is much smaller than unity,
where 𝑣 ∼ 103 cm s−1 and ℓ ∼ 109 cm are characteristic velocities and length scales for the
dominant turbulent eddies, as estimated, e.g., from mixing length theory. With 𝜂 ∼ 104 cm2 s−1,
one finds 𝑣ℓ/𝜂 ∼ 108, so that on that basis alone Equation (18) should be dubious already. In the
kinematic regime, 𝛼 and 𝛽 are independent of the magnetic field fluctuations, and end up simply
proportional to the averaged kinetic helicity and square fluctuation amplitude:

𝛼 ∼ −𝜏c
3
⟨u′ · ∇ × u′⟩ , (19)

𝜂T ∼ 𝜏c
3
⟨u′ · u′⟩ , (20)

where 𝜏c is the correlation time of the turbulent motions. Order-of-magnitude estimates of the
scalar coefficients yield 𝛼 ∼ Ωℓ and 𝜂T ∼ 𝑣ℓ, where Ω is the solar angular velocity. At the base
of the solar convection zone, one then finds 𝛼 ∼ 103 cm s−1 and 𝜂T ∼ 1012 cm2 s−1, these being
understood as very rough estimates. Because the kinetic helicity may well change sign along the
longitudinal (averaging) direction, thus leading to cancellation, the resulting value of 𝛼 may be
much smaller than its r.m.s. deviation about the longitudinal mean. In contrast the quantity being
averaged on the right hand side of Equation (20) is positive definite, so one would expect a more
“stable” mean value (see Hoyng, 1993; Ossendrijver et al., 2001, for further discussion). At any
rate, difficulties in computing 𝛼 and 𝜂T from first principle (whether as scalars or tensors) have
led to these quantities often being treated as adjustable parameters of mean-field dynamo models,
to be adjusted (within reasonable bounds) to yield the best possible fit to observed solar cycle
characteristics, most importantly the cycle period. One finds in the literature numerical values in
the approximate ranges 10 – 103 cm s−1 for 𝛼 and 1010 – 1013 cm2 s−1 for 𝜂T.

The cyclonic character of the 𝛼-effect also indicates that it is equatorially antisymmetric and
positive in the Northern solar hemisphere, except perhaps at the base of the convective envelope,
where the rapid variation of the turbulent velocity with depth can lead to a sign change. These
expectations have been confirmed in a general sense by theory and numerical simulations (see, e.g.,
Rüdiger and Kitchatinov, 1993; Brandenburg et al., 1990; Ossendrijver et al., 2001; Käpylä et al.,
2006a).

In cases where the turbulence is more strongly inhomogeneous, an additional effect comes into
play: turbulent pumping. Mathematically it arises through an antisymmetric contribution to the
𝛼-tensor in Equation (14), whose three independent components can be recast as a velocity-like
vector field 𝛾 that acts as an additional (and non-solenoidal) contribution to the mean flow:

ℰ = 𝛼𝑆 : ⟨B⟩+ 𝛾 × ⟨B⟩+ 𝛽 : ∇× ⟨B⟩ . (21)
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The tensor 𝛼𝑆 now contains only the symmetric part of the original 𝛼 tensor. Measurements of
the 𝛼-tensor in MHD numerical simulations of turbulence in a box (see Ossendrijver et al., 2002;
Käpylä et al., 2006a, and references therein) indicate that pumping is directed mostly downwards
throughout the solar convection, as a result of stratification, and that a significant equatorward
latitudinal pumping also arises once rotation becomes important, in the sense that the Coriolis
number Co = 2Ω𝜏𝑐 exceeds unity. Turbulent pumping speeds of a few m s–1 can be reached with
Co in the range 4 – 10, according to the numerical simulations of Käpylä et al. (2006a).

4.2.2 𝛼-quenching, diffusivity-quenching, and flux loss through buoyancy

Leaving the kinematic regime, it is expected that both 𝛼 and 𝜂𝑇 should depend on the strength of
the magnetic field, since magnetic tension will resist deformation by the small-scale turbulent fluid
motions. The groundbreaking numerical MHD simulations of Pouquet et al. (1976) suggested that
Equation (19) should be replaced by something like

𝛼 ∼ −𝜏c
3
[⟨u′ · ∇ × u′⟩ − ⟨a′ · ∇ × a′⟩] , (22)

where a′ = B′/
√
4𝜋𝜌 is the Alfvén speed based on the small-scale magnetic component (see also

Durney et al., 1993; Blackman and Brandenburg, 2002). This is rarely used in solar cycle modelling,
since the whole point of the mean-field approach is to avoid dealing explicitly with the small-scale,
fluctuating components. On the other hand, something is bound to happen when the growing
dynamo-generated mean magnetic field reaches a magnitude such that its energy per unit volume
is comparable to the kinetic energy of the underlying turbulent fluid motions. Denoting this
equipartition field strength by 𝐵eq, one often introduces an ad hoc nonlinear dependency of 𝛼 (and
sometimes 𝜂T as well) directly on the mean-field ⟨B⟩ by writing:

𝛼 → 𝛼(⟨B⟩) = 𝛼0

1 + (⟨B⟩ /𝐵eq)2
. (23)

This expression “does the right thing”, in that 𝛼 → 0 as ⟨B⟩ starts to exceed 𝐵eq. It remains
an extreme oversimplification of the complex interaction between flow and field that characterizes
MHD turbulence, but its wide usage in solar dynamo modeling makes it a nonlinearity of choice
for the illustrative purpose of this section.

Diffusivity-quenching is an even more uncertain proposition than 𝛼-quenching, with various
quenching models more complex than Equation (23) having been proposed (e.g., Rüdiger et al.,
1994). Measurements of the components of the 𝛼 and 𝛽 tensors in the convective turbulence
simulations of Brandenburg et al. (2008) do suggest a much stronger magnetic quenching of the
𝛼-effect than of the turbulent diffusivity, but many aspects of this problem remain open. One
appealing aspect of diffusivity quenching is its potential ability to produce localized concentrations
of strong magnetic fields, exceeding equipartition strength under some conditions (Gilman and
Rempel, 2005). On the other hand, the stability analyses of Arlt et al. (2007b,a) suggests that
there exist a lower limit to the magnetic diffusivity, below which equipartition-strength toroidal
magnetic field beneath the core-envelope interface become unstable.

Another amplitude-limiting mechanism is the loss of magnetic flux through magnetic buoyancy.
Magnetic fields concentrations are buoyantly unstable in the convective envelope, and so should
rise to the surface on time scales much shorter than the cycle period (see, e.g., Parker, 1975;
Schüssler, 1977; Moreno-Insertis, 1983, 1986). This is often incorporated on the right-hand-side of
the dynamo equations by the introduction of an ad hoc loss term of the general form −𝑓(⟨B⟩) ⟨B⟩;
the function 𝑓 measures the rate of flux loss, and is often chosen proportional to the magnetic
pressure ⟨B⟩2, thus yielding a cubic damping nonlinearity in the mean-field.
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4.2.3 The 𝛼Ω dynamo equations

Adding the mean-electromotive force given by Equation (18) to the MHD induction equation leads
to the following form for the axisymmetric mean-field dynamo equations:

𝜕⟨𝐴⟩
𝜕𝑡

= (𝜂 + 𝜂T)

(︂
∇2 − 1

𝜛2

)︂
⟨𝐴⟩⏟  ⏞  

turbulent diffusion

−up

𝜛
· ∇(𝜛 ⟨𝐴⟩) + 𝛼 ⟨𝐵⟩⏟  ⏞  

MFE source

, (24)

𝜕⟨𝐵⟩
𝜕𝑡

= (𝜂 + 𝜂T)

(︂
∇2 − 1

𝜛2

)︂
⟨𝐵⟩⏟  ⏞  

turbulent diffusion

+
1

𝜛

𝜕𝜛 ⟨𝐵⟩
𝜕𝑟

𝜕(𝜂 + 𝜂T)

𝜕𝑟⏟  ⏞  
turbulent diamagnetic transport

−𝜛up · ∇
(︂
⟨𝐵⟩
𝜛

)︂
− ⟨𝐵⟩∇ · up

+𝜛(∇× (⟨𝐴⟩ ê𝜑)) · ∇Ω⏟  ⏞  
shearing

+∇× [𝛼∇× (⟨𝐴⟩ ê𝜑)]⏟  ⏞  
MFE source

, (25)

where, in general, 𝜂T ≫ 𝜂. There are now source terms on both right hand sides, so that dynamo
action becomes possible at least in principle. The relative importance of the 𝛼-effect and shearing
terms in Equation (25) is measured by the ratio of the two dimensionless dynamo numbers

𝐶𝛼 =
𝛼0𝑅⊙

𝜂0
, 𝐶Ω =

(ΔΩ)0𝑅
2
⊙

𝜂0
, (26)

where, in the spirit of dimensional analysis, 𝛼0, 𝜂0, and (ΔΩ)0 are “typical” values for the 𝛼-effect,
turbulent diffusivity, and angular velocity contrast. These quantities arise naturally in the non-
dimensional formulation of the mean-field dynamo equations, when time is expressed in units of
the magnetic diffusion time 𝜏 based on the envelope (turbulent) diffusivity:

𝜏 =
𝑅2

⊙
𝜂T

. (27)

In the solar case, it is usually estimated that 𝐶𝛼 ≪ 𝐶Ω, so that the 𝛼-term is neglected in
Equation (25); this results in the class of dynamo models known as 𝛼Ω dynamos, which will be
the only ones discussed here4.

4.2.4 Eigenvalue problems and initial value problems

With the large-scale flows, turbulent diffusivity and 𝛼-effect considered given, Equations (24, 25)
become truly linear in 𝐴 and 𝐵. It becomes possible to seek eigensolutions in the form

⟨𝐴⟩ (𝑟, 𝜃, 𝑡) = 𝑎(𝑟, 𝜃) exp(𝑠𝑡), ⟨𝐵⟩ (𝑟, 𝜃, 𝑡) = 𝑏(𝑟, 𝜃) exp(𝑠𝑡). (28)

Substitution of these expressions into Equations (24, 25) yields an eigenvalue problem for 𝑠 and
associated eigenfunction {𝑎, 𝑏}. The real part 𝜎 ≡ Re 𝑠 is then a growth rate, and the imaginary
part 𝜔 ≡ Im 𝑠 an oscillation frequency. One typically finds that 𝜎 < 0 until the product 𝐶𝛼 × 𝐶Ω

exceeds a certain critical value 𝐷crit beyond which 𝜎 > 0, corresponding to a growing solutions.
Such solutions are said to be supercritical, while the solution with 𝜎 = 0 is critical.

4 Models retaining both 𝛼-terms are dubbed 𝛼2Ω dynamos, and may be relevant to the solar case even in the
𝐶𝛼 ≪ 𝐶Ω regime, if the latter operates in a very thin layer, e.g. the tachocline (see, e.g., DeLuca and Gilman,
1988; Gilman et al., 1989; Choudhuri, 1990); this is because the 𝛼-effect gets curled in Equation (25) for the mean
toroidal field. Models relying only on the 𝛼-terms are said to be 𝛼2 dynamos. Such models are relevant to dynamo
action in planetary cores and convective stars with vanishing differential rotation (if such a thing exists).

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2010-3

http://www.livingreviews.org/lrsp-2010-3


24 Paul Charbonneau

Clearly exponential growth of the dynamo-generated magnetic field must cease at some point,
once the field starts to backreact on the flow through the Lorentz force. This is the general
idea embodied in 𝛼-quenching. If 𝛼-quenching – or some other nonlinearity – is included, then
the dynamo equations are usually solved as an initial-value problem, with some arbitrary low-
amplitude seed field used as initial condition. Equations (24, 25) are then integrated forward
in time using some appropriate time-stepping scheme. A useful quantity to monitor in order to
ascertain saturation is the magnetic energy within the computational domain:

ℰ𝐵 =
1

8𝜋

∫︁
𝑉

⟨B⟩2 d𝑉. (29)

4.2.5 Dynamo waves

One of the most remarkable property of the (linear) 𝛼Ω dynamo equations is that they support
travelling wave solutions. This was first demonstrated in Cartesian geometry by Parker (1955),
who proposed that a latitudinally-travelling “dynamo wave” was at the origin of the observed
equatorward drift of sunspot emergences in the course of the cycle. This finding was subsequently
shown to hold in spherical geometry, as well as for non-linear models (Yoshimura, 1975; Stix, 1976).
Dynamo waves5 travel in a direction s given by

s = 𝛼∇Ω× ê𝜑, (30)

a result now known as the “Parker–Yoshimura sign rule”. Recalling the rather complex form of
the helioseismically inferred solar internal differential rotation (cf. Figure 5), even an 𝛼-effect of
uniform sign in each hemisphere can produce complex migratory patterns, as will be apparent in
the illustrative 𝛼Ω dynamo solutions to be discussed presently. Note already at this juncture that
if the seat of the dynamo is to be identified with the low-latitude portion of the tachocline, and
if the latter is thin enough for the (positive) radial shear therein to dominate over the latitudinal
shear, then equatorward migration of dynamo waves will require a negative 𝛼-effect in the low
latitudes of the Northern solar hemisphere.

4.2.6 Representative results

We first consider 𝛼Ω models without meridional circulation (up = 0 in Equations (24, 25)), with
the 𝛼-term omitted in Equation (25), and using the diffusivity and angular velocity profiles of
Figure 5. We will investigate the behavior of 𝛼Ω models with the 𝛼-effect concentrated just above
the core-envelope interface (green line in Figure 6). We also consider two latitudinal dependencies,
namely 𝛼 ∝ cos 𝜃, which is the “minimal” possible latitudinal dependency compatible with the
required equatorial antisymmetry of the Coriolis force, and an 𝛼-effect concentrated towards the
equator6 via an assumed latitudinal dependency 𝛼 ∝ sin2 𝜃 cos 𝜃.

Figures 7 and 8 show a selection of such dynamo solutions, in the form of animations in
meridional planes and time-latitude diagrams of the toroidal field extracted at the core-envelope
interface, here 𝑟c/𝑅⊙ = 0.7. If sunspot-producing toroidal flux ropes form in regions of peak
toroidal field strength, and if those ropes rise radially to the surface, then such diagrams are
directly comparable to the sunspot butterfly diagram of Figure 3. All models have 𝐶Ω = 25000,
|𝐶𝛼| = 10, 𝜂T/𝜂c = 10, and 𝜂T = 5 × 1011 cm2 s−1, which leads to 𝜏 ≃ 300 yr. To facilitate
comparison between solutions, here antisymmetric parity was imposed via the boundary condition
at the equator.

5 These are not “waves” in usual sense of the word, although they are described by modal solutions of the form
exp(𝑖k · x− 𝜔𝑡).

6 Although some turbulence model predict such higher-order latitudinal dependencies, the functional forms
adopted here are largely ad hoc, and are made for strictly illustrative purposes.
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Figure 6: Radial variation of the 𝛼-effect for the family of 𝛼Ω mean-field models considered in Sec-
tion 4.2.6. The magnetic diffusivity profile is plotted in red, and the core-envelope interface as a dotted
line.

Examination of these animations reveals that the dynamo is concentrated in the vicinity of the
core-envelope interface, where the adopted radial profile for the 𝛼-effect is maximal (cf. Figure 6).
In conjunction with a fairly thin tachocline, the radial shear therein then dominates the induction
of the toroidal magnetic component. With an eye on Figure 5, notice also how the dynamo waves
propagates along isocontours of angular velocity, in agreement with the Parker–Yoshimura sign rule
(cf. Section 4.2.5). In the butterfly diagram, this translates a systematic tilt of the isocontours of
toroidal magnetic field. Note that even for an equatorially-concentrated 𝛼-effect (Panels B and C),
a strong polar branch is nonetheless apparent in the butterfly diagrams, a direct consequence of the
stronger radial shear present at high latitudes in the tachocline (see also corresponding animations).
Models using an 𝛼-effect operating throughout the whole convective envelope, on the other hand,
would feed primarily on the latitudinal shear therein, so that for positive 𝐶𝛼 the dynamo mode
would propagate radially upward in the envelope (see Lerche and Parker, 1972).

It is noteworthy that co-existing dynamo branches, as in Panel B of Figure 8, can have distinct
dynamo periods, which in nonlinearly saturated solutions leads to long-term amplitude modulation.
This is typically not expected in dynamo models where the only nonlinearity present is a simple
algebraic quenching formula such as Equation (23). Note that this does not occur for the 𝐶𝛼 < 0
solution, where both branches propagate away from each other, but share a common latitude of
origin and so are phased-locked at the onset (cf. Panel C of Figure 8).

A common property of all oscillatory 𝛼Ω solutions discussed so far is that their period, for given
values of the dynamo numbers 𝐶𝛼, 𝐶Ω, is inversely proportional to the numerical value adopted
for the (turbulent) magnetic diffusivity 𝜂T. The ratio of poloidal-to-toroidal field strength, in turn,
is found to scale as some power (usually close to 1/2) of the ratio 𝐶𝛼/𝐶Ω, at a fixed value of the
product 𝐶𝛼 × 𝐶Ω.

The models discussed above are based on rather minimalistics and partly ad hoc assumptions
on the form of the 𝛼-effect. More elaborate models have been proposed, relying on calculations of
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Figure 7: Stills from Meridional plane animations of various 𝛼Ω dynamo solutions using different latitudi-
nal profiles and sign for the 𝛼-effect, as labeled. The polar axis coincides with the left quadrant boundary.
The toroidal field is plotted as filled contours (constant increments, green to blue for negative 𝐵, yellow
to red for positive 𝐵), on which poloidal fieldlines are superimposed (blue for clockwise-oriented fieldlines,
orange for counter-clockwise orientation). The dashed line is the core-envelope interface at 𝑟𝑐/𝑅 = 0.7.
Time-latitude “butterfly” diagrams for these three solutions are plotted in Figure 8. (To watch the movie,
please go to the online version of this review article at http://www.livingreviews.org/lrsp-2010-3.)
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Figure 8: Northern hemisphere time-latitude (“butterfly”) diagrams for the three 𝛼Ω dynamo solutions of
Figure 7, constructed at the depth 𝑟c/𝑅⊙ = 0.7 corresponding to the core-envelope interface. Isocontours of
toroidal field are normalized to their peak amplitudes, and plotted for increments Δ𝐵/max(𝐵) = 0.2, with
yellow-to-red (green-to-blue) contours corresponding to 𝐵 > 0 (< 0). The assumed latitudinal dependency
of the 𝛼-effect is given above each panel. Other model ingredients as in Figure 5. Note the co-existence of
two distinct cycles in the solution shown in Panel B.
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the full 𝛼-tensor based on some underlying turbulence models (see, e.g., Kitchatinov and Rüdiger,
1993). While this approach usually displaces the ad hoc assumptions into the turbulence model, it
has the definite merit of offering an internally consistent approach to the calculation of turbulent
diffusivities and large-scale flows. Rüdiger and Brandenburg (1995) remain a good example of the
current state-of-the-art in this area; see also Rüdiger and Arlt (2003), and references therein.

4.2.7 Critical assessment

From a practical point of view, the outstanding success of the mean-field 𝛼Ω model remains its
robust explanation of the observed equatorward drift of toroidal field-tracing sunspots in the course
of the cycle in terms of a dynamo-wave. On the theoretical front, the model is also buttressed
by mean-field electrodynamics which, in principle, offers a physically sound theory from which to
compute the (critical) 𝛼-effect and magnetic diffusivity. The models’ primary uncertainties turn out
to lie at that level, in that the application of the theory to the Sun in a tractable manner requires
additional assumptions that are most certainly not met under solar interior conditions. Those
uncertainties are exponentiated when taking the theory into the nonlinear regime, to calculate
the dependence of the 𝛼-effect and diffusivity on the magnetic field strength. This latter problem
remains very much open at this writing.

4.3 Interface dynamos

4.3.1 Strong 𝛼-quenching and the saturation problem

The 𝛼-quenching expression (23) used in the preceding section amounts to saying that dynamo
action saturates once the mean, dynamo-generated field reaches an energy density comparable to
that of the driving turbulent fluid motions, i.e., 𝐵eq ∼

√
4𝜋𝜌 𝑣, where 𝑣 is the turbulent velocity

amplitude. This appears eminently sensible, since from that point on a toroidal fieldline would
have sufficient tension to resist deformation by cyclonic turbulence, and so could no longer feed the
𝛼-effect. At the base of the solar convective envelope, one finds 𝐵eq ∼ 1 kG, for 𝑣 ∼ 103 cm s−1,
according to standard mixing length theory of convection. However, various calculations and
numerical simulations have indicated that long before the mean field ⟨B⟩ reaches this strength, the
helical turbulence reaches equipartition with the small-scale, turbulent component of the magnetic
field (e.g., Cattaneo and Hughes, 1996, and references therein). Such calculations also indicate

that the ratio between the small-scale and mean magnetic components should itself scale as Rm1/2,
where Rm = 𝑣ℓ/𝜂 is a magnetic Reynolds number based on the microscopic magnetic diffusivity.
This then leads to the alternate quenching expression

𝛼 → 𝛼(⟨B⟩) = 𝛼0

1 + Rm(⟨B⟩ /𝐵eq)2
, (31)

known in the literature as strong 𝛼-quenching or catastrophic quenching. Since Rm ∼ 108 in the
solar convection zone, this leads to quenching of the 𝛼-effect for very low amplitudes for the mean
magnetic field, of order 10–1 G. Even though significant field amplification is likely in the formation
of a toroidal flux rope from the dynamo-generated magnetic field, we are now a very long way from
the 10 – 100 kG demanded by simulations of buoyantly rising flux ropes (see Fan, 2009).

A way out of this difficulty was proposed by Parker (1993), in the form of interface dynamos.
The idea is beautifully simple: If the toroidal field quenches the 𝛼-effect, amplify and store the
toroidal field away from where the 𝛼-effect is operating! Parker showed that in a situation where
a radial shear and 𝛼-effect are segregated on either side of a discontinuity in magnetic diffusivity
(taken to coincide with the core-envelope interface), the 𝛼Ω dynamo equations support solutions
in the form of travelling surface waves localized on the discontinuity in diffusivity. The key aspect
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of Parker’s solution is that for supercritical dynamo waves, the ratio of peak toroidal field strength
on either side of the discontinuity surface is found to scale with the diffusivity ratio as

max(𝐵2)

max(𝐵1)
∼

(︂
𝜂2
𝜂1

)︂−1/2

, (32)

where the subscript “1” refers to the low-𝜂 region below the core-envelope interface, and “2” to
the high-𝜂 region above. If one assumes that the envelope diffusivity 𝜂2 is of turbulent origin then
𝜂2 ∼ ℓ𝑣, so that the toroidal field strength ratio then scales as ∼ (𝑣ℓ/𝜂1)

1/2 ≡ Rm1/2. This is
precisely the factor needed to bypass strong 𝛼-quenching (Charbonneau and MacGregor, 1996).
Somewhat more realistic variations on Parker’s basic model were later elaborated (MacGregor and
Charbonneau, 1997 and Zhang et al., 2004), and, while differing in important details, nonetheless
confirmed Parker’s overall picture.

Tobias (1996a) discusses in detail a related Cartesian model bounded in both horizontal and
vertical direction, but with constant magnetic diffusivity 𝜂 throughout the domain. Like Parker’s
original interface configuration, his model includes an 𝛼-effect residing in the upper half of the do-
main, with a purely radial shear in the bottom half. The introduction of diffusivity quenching then
reduces the diffusivity in the shear region, “naturally” turning the model into a bona fide interface
dynamo, supporting once again oscillatory solutions in the form of dynamo waves travelling in the
“latitudinal” x-direction. This basic model was later generalized by various authors (Tobias, 1997;
Phillips et al., 2002) to include the nonlinear backreaction of the dynamo-generated magnetic field
on the differential rotation; further discussion of such nonlinear models is deferred to Section 5.3.1.

4.3.2 Representative results

The next obvious step is to construct an interface dynamo in spherical geometry, using a solar-
like differential rotation profile. This was undertaken by Charbonneau and MacGregor (1997).
Unfortunately, the numerical technique used to handle the discontinuous variation in 𝜂 at the
core-envelope interface turned out to be physically erroneous for the vector potential 𝐴 describing
the poloidal field7 (see Markiel and Thomas, 1999, for a discussion of this point), which led to
spurious dynamo action in some parameter regimes. The matching problem is best avoided by
using a continuous but rapidly varying diffusivity profile at the core-envelope interface, with the
𝛼-effect concentrated at the base of the envelope, and the radial shear immediately below, but
without significant overlap between these two source regions (see Panel B of Figure 9). Such
numerical models can be constructed as a variation on the 𝛼Ω models considered earlier.

In spherical geometry, and especially in conjunction with a solar-like differential rotation profile,
making a working interface dynamo model is markedly trickier than if only a radial shear is
operating, as in the Cartesian models discussed earlier (see Charbonneau and MacGregor, 1997;
Markiel and Thomas, 1999; Zhang et al., 2003a). Panel A of Figure 9 shows a butterfly diagram for
a numerical interface solution with 𝐶Ω = 2.5 × 105, 𝐶𝛼 = +10, and a core-to-envelope diffusivity
contrast Δ𝜂 = 10−2. The poleward propagating equatorial branch is precisely what one would
expect from the combination of positive radial shear and positive 𝛼-effect according to the Parker–
Yoshimura sign rule8. Here the 𝛼-effect is (artificially) concentrated towards the equator, by
imposing a latitudinal dependency 𝛼 ∼ sin(4𝜃) for 𝜋/4 ≤ 𝜃 ≤ 3𝜋/4, and zero otherwise.

The model does achieve the kind of toroidal field amplification one would like to see in interface
dynamos. This can be seen in Panel B of Figure 9, which shows radial cuts of the toroidal field
taken at latitude 𝜋/8, and spanning half a cycle. Notice how the toroidal field peaks below the

7 Mea culpa on this one...
8 For this particular choice of 𝛼, 𝜂, and Ω profiles, solutions with negative 𝐶𝛼 are non-oscillatory in most of the

[𝐶𝛼, 𝐶Ω,Δ𝜂] parameter space. This is in agreement with the results of Markiel and Thomas (1999).
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Figure 9: A representative interface dynamo model in spherical geometry. This solution has 𝐶Ω =
2.5×105, 𝐶𝛼 = +10, and a core-to-envelope diffusivity contrast of 10–2. Panel A shows a sunspot butterfly
diagram, and Panel B a series of radial cuts of the toroidal field at latitude 15°. The (normalized) radial
profiles of magnetic diffusivity, 𝛼-effect, and radial shear are also shown, again at latitude 15°. The
core-envelope interface is again at 𝑟/𝑅⊙ = 0.7 (dotted line), where the magnetic diffusivity varies near-
discontinuously. Panels C and D show the variations of the core-to-envelope peak toroidal field strength
and dynamo period with the diffusivity contrast, for a sequence of otherwise identical dynamo solutions.
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core-envelope interface (vertical dotted line), well below the 𝛼-effect region and near the peak in
radial shear. Panel C of Figure 9 shows how the ratio of peak toroidal field below and above
𝑟c varies with the imposed diffusivity contrast Δ𝜂. The dashed line is the dependency expected
from Equation (32). For relatively low diffusivity contrast, −1.5 ≤ log(Δ𝜂) . 0, both the toroidal
field ratio and dynamo period increase as ∼ (Δ𝜂)−1/2. Below log(Δ𝜂) ∼ −1.5, the max(𝐵)-ratio
increases more slowly, and the cycle period falls, contrary to expectations for interface dynamos
(see, e.g., MacGregor and Charbonneau, 1997). This is basically an electromagnetic skin-depth
effect; the cycle period is such that the poloidal field cannot diffuse as deep as the peak in radial
shear in the course of a half cycle. The dynamo then runs on a weaker shear, thus yielding a
smaller field strength ratio and weaker overall cycle; on the energetics of interface dynamos (see
Ossendrijver and Hoyng, 1997, also Steiner and Ferriz-Mas, 2005).

4.3.3 Critical assessment

So far the great success of interface dynamos remains their ability to evade 𝛼-quenching even in
its “strong” formulation, and so produce equipartition or perhaps even super-equipartition mean
toroidal magnetic fields immediately beneath the core-envelope interface. They represent the only
variety of dynamo models formally based on mean-field electrodynamics that can achieve this
without additional physical effects introduced into the model. All of the uncertainties regarding
the calculations of the 𝛼-effect and magnetic diffusivity carry over from 𝛼Ω to interface models,
with diffusivity quenching becoming a particularly sensitive issue in the latter class of models (see,
e.g., Tobias, 1996a).

Interface dynamos suffer acutely from something that is sometimes termed “structural fragility”.
Many gross aspects of the model’s dynamo behavior often end up depending sensitively on what
one would normally hope to be minor details of the model’s formulation. For example, the interface
solutions of Figure 9 are found to behave very differently if the 𝛼-effect region is displaced slightly
upwards, or assumes other latitudinal dependencies. Moreover, as exemplified by the calculations
of Mason et al. (2008), this sensitivity carries over to models in which the coupling between the
two source regions is achieved by transport mechanisms other than diffusion. This sensitivity is
exacerbated when a latitudinal shear is present in the differential rotation profile; compare, e.g.,
the behavior of the 𝐶𝛼 > 0 solutions discussed here to those discussed in Markiel and Thomas
(1999). Often in such cases, a mid-latitude 𝛼Ω dynamo mode, powered by the latitudinal shear
within the tachocline and envelope, interferes with and/or overpowers the interface mode (see also
Dikpati et al., 2005).

Because of this structural sensitivity, interface dynamo solutions also end up being annoyingly
sensitive to choice of time-step size, spatial resolution, and other purely numerical details. From a
modelling point of view, interface dynamos lack robustness.

4.4 Mean-field models including meridional circulation

Meridional circulation is unavoidable in turbulent, compressible rotating convective shells. It
basically results from an imbalance between Reynolds stresses and buoyancy forces. The ∼ 15 m s–1

poleward flow observed at the surface (see, e.g., Hathaway, 1996; Ulrich and Boyden, 2005) has
now been detected helioseismically, down to 𝑟/𝑅⊙ ≃ 0.85 (Schou and Bogart, 1998; Braun and
Fan, 1998), without significant departure from the poleward direction except locally and very close
to the surface, in the vicinity of active region belts (see Gizon, 2004; Gizon and Rempel, 2008, and
references therein), and in polar latitudes at some phases of the solar cycle (Haber et al., 2002).
Long considered unimportant from the dynamo point of view, meridional circulation has gained
popularity in recent years, initially in the Babcock–Leighton context but now also in other classes
of models.
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Accordingly, we now add a steady meridional circulation to our basic 𝛼Ω models of Section 4.2.
The convenient parametric form developed by van Ballegooijen and Choudhuri (1988) is used
here and in all later illustrative models including meridional circulation (Sections 4.5 and 4.8).
This parameterization defines a steady quadrupolar circulation pattern, with a single flow cell per
quadrant extending from the surface down to a depth 𝑟b. Circulation streamlines are shown in
Figure 10, together with radial cuts of the latitudinal component at mid-latitudes (𝜃 = 𝜋/4). The
flow is poleward in the outer convection zone, with an equatorial return flow peaking slightly above
the core-envelope interface, and rapidly vanishing below.

The inclusion of meridional circulation in the non-dimensionalized 𝛼Ω dynamo equations leads
to the appearance of a new dimensionless quantity, again a magnetic Reynolds number, but now
based on an appropriate measure of the circulation speed 𝑢0:

Rm =
𝑢0𝑅⊙

𝜂T
. (33)

Using the value 𝑢0 = 1500 cm s−1 from observations of the observed poleward surface meridional
flow leads to Rm ≃ 200, again with 𝜂T = 5×1011 cm2 s−1. In the solar cycle context, using higher
values of Rm thus implies proportionally lower turbulent diffusivities.

4.4.1 Representative results

Meridional circulation can bodily transport the dynamo-generated magnetic field (terms labeled
“advective transport” in Equations (11, 12)), and therefore, for a (presumably) solar-like equator-
ward return flow that is vigorous enough – in the sense of Rm being large enough – overpower
the Parker–Yoshimura propagation rule embodied in Equation (30). This was nicely demonstrated
by Choudhuri et al. (1995), in the context of a mean-field 𝛼Ω model with a positive 𝛼-effect con-
centrated near the surface, and a latitude-independent, purely radial shear at the core-envelope
interface. The behavioral turnover from dynamo wave-like solutions to circulation-dominated mag-
netic field transport sets in when the circulation speed becomes comparable to the propagation
speed of the dynamo wave. In the circulation-dominated regime, the cycle period loses sensitivity
to the assumed turbulent diffusivity value, and becomes determined primarily by the circulation’s
turnover time. Models achieving equatorward propagation of the deep toroidal magnetic compo-
nent in this manner are now often called flux-transport dynamos.

With a solar-like differential rotation profile, however, once again the situation is far more
complex. Starting from the most basic 𝛼Ω dynamo solution with 𝛼 ∼ cos 𝜃 (Figure 8A), new
solutions are now recomputed, this time including meridional circulation. An animation of a
typical solution is shown in Figure 11, and a sequence of time-latitude diagrams for four increasing
values of the circulation flow speed, as measured by Rm, are plotted in Figure 12.

At Rm = 50, little difference is seen with the circulation-free solutions (cf. Figure 8A), except
for an increase in the cycle frequency, due to the Doppler shift experienced by the equatorwardly
propagating dynamo wave (see Roberts and Stix, 1972). At Rm = 100 (part B), the cycle frequency
has further increased and the poloidal component produced in the high-latitude region of the
tachocline is now advected to the equatorial regions on a timescale becoming comparable to the
cycle period, so that a cyclic activity, albeit with a longer period, becomes apparent at low latitudes.
At Rm = 103 (panel C and animation in Figure 11) the dynamo mode now peaks at mid-latitude,
a consequence of the inductive action of the latitudinal shear, favored by the significant stretching
experienced by the poloidal fieldlines as they get advected equatorward. At Rm = 2000 the original
high latitude dynamo mode has all but vanished, and the mid-latitude mode is dominant. The
cycle period is now set primarily by the turnover time of the meridional flow; this is the telltale
signature of flux-transport dynamos.

All this may look straightforward, but it must be emphasized that not all dynamo models
with solar-like differential rotation behave in this (relatively) simple manner. For example, the
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Figure 10: Streamlines of meridional circulation (Panel A), together with the total magnetic diffusivity
profile defined by Equation (17) (dash-dotted line) and a mid-latitude radial cut of 𝑢𝜃 (bottom panel).
The dotted line is the core-envelope interface. This is the analytic flow of van Ballegooijen and Choudhuri
(1988), with parameter values 𝑚 = 0.5, 𝑝 = 0.25, 𝑞 = 0, and 𝑟b = 0.675.
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Figure 11: Still from a movie showing Meridional plane animations for an 𝛼Ω dynamo solutions including
meridional circulation. With Rm = 103, this solution is operating in the advection-dominated regime as a
flux-transport dynamo. The corresponding time-latitude “butterfly” diagram is plotted in Figure 12C be-
low. Color-coding of the toroidal magnetic field and poloidal fieldlines as in Figure 7. (To watch the movie,
please go to the online version of this review article at http://www.livingreviews.org/lrsp-2010-3.)

𝐶𝛼 = −10 solution with 𝛼 ∼ sin2 𝜃 cos 𝜃 (Figure 8C) transits to a steady mode as Rm increases
above ∼ 102. Moreover, the sequence of 𝛼 ∼ cos 𝜃 shown in Figure 12 actually presents a narrow
window around Rm ∼ 200 where the dynamo is decaying, due to a form of destructive interference
between the high-latitude 𝛼Ω mode and the mid-latitude advection-dominated dynamo mode that
dominates at higher values of Rm. Qualitatively similar results were obtained by Küker et al. (2001)
using different prescriptions for the 𝛼-effect and solar-like differential rotation (see in particular
their Figure 11; see also Rüdiger and Elstner, 2002; Bonanno et al., 2003). When field transport
by turbulent pumping are included (see Käpylä et al., 2006b), 𝛼Ω models including meridional
circulation can provide time-latitude “butterfly” diagrams that are reasonably solar-like.

Even if the meridional flow is too slow – or the turbulent magnetic diffusivity too high – to
force the dynamo model in the advection-dominated regime, being much faster at the surface the
poleward flow can dominate the spatio-temporal evolution of the radial surface magnetic field, as
shown in Figure 13, for the same sequence of 𝛼Ω solutions with 𝛼 ∼ cos 𝜃 as in Figure 12, at
Rm = 0, 50, 100, and 500 (panels A –D). For low circulation speeds (Rm . 50), the equatorward
drift of the surface radial field is simply a diffused imprint of the equatorward drift of the deep-
seated toroidal field (cf. Figure 8A and 12A). At higher circulation speeds, however, the surface
magnetic field is swept instead towards the pole (see Figure 13C), becoming strongly concentrated
and amplified there for Rm exceeding a few hundreds (Figures 11 and 13D).

4.4.2 Critical assessment

From the modelling point-of-view, in the kinematic regime at least the inclusion of meridional
circulation yields a much better fit to observed surface magnetic field evolution, as well as a robust
setting of the cycle period. Whether it can provide an equally robust equatorward propagation
of the deep toroidal field is less clear. The results presented here in the context of mean-field 𝛼Ω
models suggest a rather complex overall picture, and in interface dynamos the cartesian solutions
obtained by Petrovay and Kerekes (2004) even suggest that dynamo action can be severely hindered.
Yet, in other classes of models discussed below (Sections 4.5 and 4.8), circulation does have this
desired effect (see also Seehafer and Pipin, 2009, for an intriguing mean-field model calculation not
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Figure 12: Time-latitude “butterfly” diagrams for the 𝛼-quenched 𝛼Ω solutions depicted earlier in Panel A
of Figure 8, except that meridional circulation is now included, with (A) Rm = 50, (B) Rm = 100, (C)
Rm = 1000, and (D) Rm = 2000 For the turbulent diffusivity value adopted here, 𝜂T = 5× 1011 cm2 s−1,
Rm = 200 would corresponds to a solar-like circulation speed.
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Figure 13: Time-latitude diagrams of the surface radial magnetic field, for increasing values of the
circulation speed, as measured by the Reynolds number Rm. This is for the same reference 𝛼Ω with
𝛼 ∼ cos 𝜃 as in Figures 8A and 12. Note the marked increased of the peak surface field strength as Rm
exceeds ∼ 100.
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relying on the 𝛼-effect).

On the other hand, dynamo models including meridional circulation tend to produce surface
polar field strength largely in excess of observed values, unless magnetic diffusion is significantly
enhanced in the surface layers, and/or field submergence takes place very efficiently. This is a
direct consequence of magnetic flux conservation in the converging poleward flow. This situation
carries over to the other types of models to be discussed in Sections 4.5 and 4.8, unless additional
modelling assumptions are introduced (e.g., enhanced surface magnetic diffusivity, see Dikpati
et al., 2004), or if a counterrotating meridional flow cell is introduced in the high latitude regions
(Dikpati et al., 2004; Jiang et al., 2009), a feature that has actually been detected in surface
Doppler measurements as well as helioseismically during cycle 22 (see Haber et al., 2002; Ulrich
and Boyden, 2005).

A more fundamental and potential serious difficulty harks back to the kinematic approxima-
tion, whereby the form and speed of up is specified a priori. Meridional circulation is a relatively
weak flow in the bottom half of the solar convective envelope (see Miesch, 2005), and the stochas-
tic fluctuations of the Reynolds stresses powering it are expected to lead to strong spatiotemporal
variations, and expectation verified by both analytical models (Rempel, 2005) and numerical simu-
lations (Miesch, 2005). The ability of thus meridional flow to merrily advect equipartition-strength
magnetic fields should not be taken for granted (but do see Rempel, 2006a,b).

Before leaving the realm of mean-field dynamo models it is worth noting that many of the
conceptual difficulties associated with calculations of the 𝛼-effect and turbulent diffusivity are not
unique to the mean-field approach, and in fact carry over to all models discussed in the following
sections. In particular, to operate properly all of the upcoming solar dynamo models require the
presence of a strongly enhanced magnetic diffusivity, presumably of turbulent origin, at least in
the convective envelope. In this respect, the rather low value of the turbulent magnetic diffusivity
needed to achieve high enough Rm in flux transport dynamos is also somewhat problematic, since
the corresponding turbulent diffusivity ends up some two orders of magnitude below the (uncertain)
mean-field estimates. However, the model calculations of Muñoz-Jaramillo et al. (2010a) indicate
that magnetic diffusivity quenching may offer a viable solution to this latter quandary.

4.5 Models based on shear instabilities

We now turn to a recently proposed class of flux transport dynamo models relying on the latitudinal
shear instability of the angular velocity profiles in the upper radiative portion of the solar tachocline
(Dikpati and Gilman, 2001; Dikpati et al., 2004). These authors work with what are effectively the
mean field 𝛼Ω dynamo equations including meridional circulation. They design their “tachocline
𝛼-effect” in the form of a latitudinal parameterization of the longitudinally-averaged kinetic helicity
associated with the planforms they obtain from a linear hydrodynamical stability analysis of the
latitudinal differential rotation in the part of the tachocline coinciding with the overshoot region.
The analysis is carried out in the framework of shallow-water theory (see Dikpati and Gilman,
2001). In analogy with mean-field theory, the resulting 𝛼-effect is assumed to be proportional
to kinetic helicity but of opposite sign (see Equation (19)), and ends up predominantly positive
at mid-latitudes in the Northern solar hemisphere. In their dynamo model, Dikpati and Gilman
(2001) use a solar-like differential rotation, depth-dependent magnetic diffusivity and meridional
circulation pattern much similar to those shown in Figures 5, 6, and 10 herein. The usual ad hoc
𝛼-quenching formula (cf. Equation (23)) is introduced as the sole amplitude-limiting nonlinearity.

4.5.1 Representative solutions

Many representative solutions for this class of dynamo models can be examined in Dikpati and
Gilman (2001) and Dikpati et al. (2004), where their properties are discussed at some length.
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Figure 14 shows time-latitude diagrams of the toroidal field at the core-envelope interface, and
surface radial field. This is a solar-like solution with a mid-latitude surface meridional (poleward)
flow speed of 17 m s–1, envelope diffusivity 𝜂T = 5×1011 cm2 s−1, and a core-to-envelope magnetic
diffusivity contrast Δ𝜂 = 10−3. Note the equatorward migration of the deep toroidal field, set here
by the meridional flow in the deep envelope, and the poleward migration and intensification of the
surface poloidal field, again a direct consequence of advection by meridional circulation, as in the
mean-field dynamo models discussed in Section 4.4, when operating in the advection-dominated,
high Rm regime. The three-lobe structure of each spatio-temporal cycle in the butterfly diagram
reflects the presence of three peaks in the latitudinal profile of kinetic helicity for this model.

4.5.2 Critical assessment

While these models are only a recent addition to the current “zoo” of solar dynamo models, they
have been found to compare favorably to a number of observed solar cycle features. The model can
be adjusted to yield equatorward propagating dominant activity belts, solar-like cycle periods, and
correct phasing between the surface polar field and the tachocline toroidal field. These features
can be traced primarily to the advective action of the meridional flow. They also yield the correct
solution parity, and are self-excited. Like conventional 𝛼Ω models relying on meridional circulation
to set the propagation direction of dynamo waves (see Section 4.4.2), the meridional flow must
remain unaffected by the dynamo-generated magnetic field at least up to equipartition strength,
a potentially serious difficulty also shared by the Babcock–Leighton models to be discussed in
Section 4.8 below.

The primary weakness of these models, in their present form, is their reliance on a linear
stability analysis that altogether ignores the destabilizing effect of magnetic fields. Gilman and
Fox (1997) have demonstrated that the presence of even a weak toroidal field in the tachocline
can very efficiently destabilize a latitudinal shear profile that is otherwise hydrodynamically stable
(see also Zhang et al., 2003b). Relying on a purely hydrodynamical stability analysis is then hard
to reconcile with a dynamo process producing strong toroidal field bands of alternating polarities
migrating towards the equator in the course of the cycle, especially since latitudinally concentrated
toroidal fields have been found to be unstable over a very wide range of toroidal field strengths
(see Dikpati and Gilman, 1999). Achieving dynamo saturation through a simple amplitude-limiting
quenching formula such as Equation (23) is then also hard to justify. Progress has been made in
studying non-linear development of both the hydrodynamical and MHD versions of the shear
instability (see, e.g., Cally, 2001; Cally et al., 2003), so that the needed improvements on the
dynamo front are hopefully forthcoming.

4.6 Models based on buoyant instabilities of sheared magnetic layers

Dynamo models relying on the buoyant instability of magnetized layers have been presented in
Thelen (2000b), the layer being identified with the tachocline. Here also the resulting azimuthal
electromotive force is parameterized as a mean-field-like 𝛼-effect, introduced into the standard 𝛼Ω
dynamo equations. The model is nonlinear, in that it includes the magnetic backreaction on the
large-scale, purely radial velocity shear within the layer. The analysis of Thelen (2000a) indicates
that the 𝛼-effect is negative in the upper part of the shear layer. Cyclic solutions are found in
substantial regions of parameter space, and, not surprisingly, the solutions exhibit migratory wave
patterns compatible with the Parker–Yoshimura sign rule.

Representative solutions for this class of dynamo models can be examined in Thelen (2000b).
These models are not yet at the stage where they can be meaningfully compared with the solar
cycle. They do have a number of attractive features, including their ability to operate in the strong
field regime.
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Figure 14: Time-latitude “butterfly” diagrams of the toroidal field at the core-envelope interface (top),
and surface radial field (bottom) for a representative dynamo solution computed using the model of Dikpati
and Gilman (2001). Note how the deep toroidal field peaks at very low latitudes, in good agreement with
the sunspot butterfly diagram. For this solution the equatorial deep toroidal field and polar surface radial
field lag each other by ∼ 𝜋, but other parameter settings can bring this lag closer to the observed 𝜋/2
(diagrams kindly provided by M. Dikpati).
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4.7 Models based on flux tube instabilities

4.7.1 From instability to 𝛼-effect

To date, stability studies of toroidal flux ropes stored in the overshoot layer have been carried out
in the framework of the thin-flux tube approximation (Spruit, 1981). It is possible to construct
“stability diagrams” taking the form of growth rate contours in a parameter space comprised of
flux tube strength, latitudinal location, depth in the overshoot layer, etc. One such diagram, taken
from Ferriz-Mas et al. (1994), is reproduced in Figure 15. The key is now to identify regions in
such stability diagrams where weak instability arises (growth rates & 1 yr). In the case shown in
Figure 15, these regions are restricted to flux tube strengths in the approximate range 60 – 150 kG.
The correlation between the flow and field perturbations is such as to yield a mean azimuthal
electromotive force equivalent to a positive 𝛼-effect in the N-hemisphere (Ferriz-Mas et al., 1994;
Brandenburg and Schmitt, 1998).

III

I

II

Figure 15: Stability diagram for toroidal magnetic flux tubes located in the overshoot layer immediately
beneath the core-envelope interface. The plot shows contours of growth rates in the latitude-field strength
plane. The gray scale encodes the azimuthal wavenumber of the mode with largest growth rate, and
regions left in white are stable. Dynamo action is associated with the regions with growth rates ∼ 1 yr,
here labeled I and II (diagram kindly provided by A. Ferriz-Mas).

4.7.2 Representative solutions

Dynamo models relying on the non-axisymmetric buoyant instability of toroidal magnetic fields
were first proposed by Schmitt (1987), and further developed by Ferriz-Mas et al. (1994); Schmitt
et al. (1996), and Ossendrijver (2000a) for the case of toroidal flux tubes. These dynamo models
are all mean-field-like, in that the mean azimuthal electromotive force arising from instability of
the flux tubes is parametrized as an 𝛼-effect, and the dynamo equations solved are then the same
as those of the conventional 𝛼Ω mean-field model (see Section 4.2.3), including various forms of
algebraic 𝛼-quenching as the sole amplitude-limiting nonlinearity. As with mean-field models,
the dynamo period presumably depends sensitively on the assumed value of (turbulent) magnetic
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diffusivity, and equatorward propagation of the dynamo wave requires a negative 𝛼-effect at low
latitudes.

4.7.3 Critical assessment

Although it has not yet been comprehensively studied, this dynamo mechanism has a number of
very attractive properties. It operates without difficulty in the strong field regime (in fact it requires
strong fields to operate). It also naturally yields dynamo action concentrated at low latitudes, so
that a solar-like butterfly diagram can be readily produced from a negative 𝛼-effect even with a
solar-like differential rotation profile, at least judging from the solutions presented in Schmitt et al.
(1996) and Ossendrijver (2000a,b).

Difficulties include the need of a relatively finely tuned magnetic diffusivity to achieve a solar-
like dynamo period, and a finely tuned level of subadiabaticity in the overshoot layer for the
instability to kick on and off at the appropriate toroidal field strengths (compare Figures 1 and
2 in Ferriz-Mas et al., 1994). The non-linear saturation of the instability is probably less of an
issue here than with the 𝛼-effect based on purely hydrodynamical shear instability (see Section 4.5
above), since, as the instability grows, the flux ropes leave the site of dynamo action by entering
the convection zone and buoyantly rising to the surface.

The effects of meridional circulation in this class of dynamo models has yet to be investigated;
this should be particularly interesting, since both analytic calculations and numerical simulations
suggest a positive 𝛼-effect in the Northern hemisphere, which should then produce poleward prop-
agation of the dynamo wave at low latitude. Meridional circulation could then perhaps produce
equatorward propagation of the dynamo magnetic field even with a positive 𝛼-effect, as it does in
true mean-field models (cf. Section 4.4).

4.8 Babcock–Leighton models

Solar cycle models based on what is now called the Babcock–Leighton mechanism were first pro-
posed by Babcock (1961) and further elaborated by Leighton (1964, 1969), yet they were all but
eclipsed by the rise of mean-field electrodynamics in the mid- to late 1960s. Their revival was
motivated not only by the mounting difficulties with mean-field models alluded to earlier, but also
by the fact that synoptic magnetographic monitoring over solar cycles 21 and 22 has offered strong
evidence that the surface polar field reversals are indeed triggered by the decay of active regions
(see Wang et al., 1989; Wang and Sheeley Jr, 1991, and references therein). The crucial question is
whether this is a mere side-effect of dynamo action taking place independently somewhere in the
solar interior, or a dominant contribution to the dynamo process itself.

The mode of operation of a generic solar cycle model based on the Babcock–Leighton mechanism
is illustrated in cartoon form in Figure 16. Let 𝑃𝑛 represent the amplitude of the high-latitude,
surface (“A”) poloidal magnetic field in the late phases of cycle 𝑛, i.e., after the polar field has
reversed. The poloidal field 𝑃𝑛 is advected downward by meridional circulation (A→B), where
it then starts to be sheared by the differential rotation while being also advected equatorward
(B→C). This leads to the growth of a new low-latitude (C) toroidal flux system 𝑇𝑛+1, which
becomes buoyantly unstable (C→D) and starts producing sunspots (D) which subsequently decay
and release the poloidal flux 𝑃𝑛+1 associated with the new cycle 𝑛 + 1. Poleward advection and
accumulation of this new flux at high latitudes (D→A) then obliterates the old poloidal flux 𝑃𝑛,
and the above sequence of steps begins anew.

Meridional circulation clearly plays a key role in this “conveyor belt” model of the solar cycle,
by providing the needed link between the two spatially segregated source regions. Not surprisingly,
topologically more complex multi-cells circulation patterns can lead to markedly different dynamo
behavior (see, e.g., Bonanno et al., 2006; Jouve and Brun, 2007), and can also have a profound
impact on the evolution of the surface magnetic field (Dikpati et al., 2004; Jiang et al., 2009).
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Figure 16: Operation of a solar cycle model based on the Babcock–Leighton mechanism. The diagram
is drawn in a meridional quadrant of the Sun, with streamlines of meridional circulation plotted in blue.
Poloidal field having accumulated in the surface polar regions (“A”) at cycle 𝑛 must first be advected down
to the core-envelope interface (dotted line) before production of the toroidal field for cycle 𝑛+ 1 can take
place (B→C). Buoyant rise of flux rope to the surface (C→D) is a process taking place on a much shorter
timescale.

4.8.1 Formulation of a poloidal source term

As with all other dynamo models discussed thus far, the troublesome ingredient in dynamo models
relying on the Babcock–Leighton mechanism is the specification of an appropriate poloidal source
term, to be incorporated into the mean-field axisymmetric dynamo equations. In essence, all
implementations discussed here are inspired by the results of numerical simulations of the buoyant
rise of thin flux tubes, which, in principle allow to calculate the emergence latitudes and tilts of
BMRs, which is at the very heart of the Babcock–Leighton mechanism.

The first post-helioseismic dynamo model based on the Babcock–Leighton mechanism is due
to Wang et al. (1991); these authors developed a coupled two-layer model (2 Ö 1D), where a
poloidal source term is introduced in the upper (surface) layer, and made linearly proportional
to the toroidal field strength at the corresponding latitude in the bottom layer. A similar non-
local approach was later used by Dikpati and Charbonneau (1999), Charbonneau et al. (2005) and
Guerrero and de Gouveia Dal Pino (2008) in their 2D axisymmetric model implementation, using
a solar-like differential rotation and meridional flow profiles similar to Figures 5 and 10 herein. The
otherwise much similar implementation of Nandy and Choudhuri (2001, 2002) and Chatterjee et al.
(2004), on the other hand, uses a mean-field-like local 𝛼-effect, concentrated in the upper layers
of the convective envelope and operating in conjunction with a “buoyancy algorithm” whereby
toroidal fields located at the core-envelope interface are locally removed and deposited in the
surface layers when their strength exceed some preset threshold. The implementation developed
by Durney (1995) is probably closest to the essence of the Babcock–Leighton mechanism (see also
Durney et al., 1993; Durney, 1996, 1997); whenever the deep-seated toroidal field exceeds some
preset threshold, an axisymmetric “double ring” of vector potential is deposited in the surface
layer, and left to spread latitudinally under the influence of magnetic diffusion. As shown by
Muñoz-Jaramillo et al. (2010b), this formulation, used in conjunction with the axisymmetric models
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discussed in what follows, also leads to a good reproduction of the observed synoptic evolution of
surface magnetic flux.

In all cases the poloidal source term is concentrated in the outer convective envelope, and,
in the language of mean-field electrodynamics, amounts to a positive 𝛼-effect, in that a positive
dipole moment is being produced from a positive deep-seated mean toroidal field. The Dikpati and
Charbonneau (1999) and Nandy and Choudhuri (2001) source terms both have an 𝛼-quenching-like
upper operating threshold on the toroidal field strength. This is motivated by simulations of rising
thin flux tubes, indicating that tubes with strengths in excess of about 100 kG emerge without the
E-W tilt required for the Babcock–Leighton mechanism to operate. The Durney (1995), Nandy
and Choudhuri (2001), and Charbonneau et al. (2005) implementations also have a lower operating
threshold, as suggested by thin flux tubes simulations.

4.8.2 Representative results

Figure 17 is a meridional plane animation of a representative Babcock–Leighton dynamo solution
computed following the model implementation of Charbonneau et al. (2005). The equatorward
advection of the deep toroidal field by meridional circulation is here clearly apparent. Note also
how the surface poloidal field first builds up at low latitudes, and is subsequently advected poleward
and concentrated near the pole.

Figure 17: Still from a movie showing Meridional plane animation of a representative Babcock–Leighton
dynamo solution from Charbonneau et al. (2005). Color coding of the toroidal field and poloidal fieldlines
as in Figure 7. This solution uses the same differential rotation, magnetic diffusivity, and meridional
circulation profile as for the advection-dominated 𝛼Ω solution of Section 4.4, but now with the non-local
surface source term, as formulated in Charbonneau et al. (2005), and parameter values 𝐶𝛼 = 5, 𝐶Ω = 5×
104, Δ𝜂 = 0.003, Rm = 840. Note again the strong amplification of the surface polar fields, the latitudinal
stretching of poloidal fieldlines by the meridional flow at the core-envelope interface. (To watch the movie,
please go to the online version of this review article at http://www.livingreviews.org/lrsp-2010-3.)

Figure 18 shows N-hemisphere time-latitude diagrams for the toroidal magnetic field at the
core-envelope interface (Panel A), and the surface radial field (Panel B), for a Babcock–Leighton
dynamo solution now computed following the closely similar model implementation of Dikpati and
Charbonneau (1999). Note how the polar radial field changes from negative (blue) to positive
(red) at just about the time of peak positive toroidal field at the core-envelope interface; this is
the phase relationship inferred from synoptic magnetograms (see, e.g., Figure 4 herein) as well as
observations of polar faculae (see Sheeley Jr, 1991).
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Figure 18: Time-latitude diagrams of the toroidal field at the core-envelope interface (Panel A), and
radial component of the surface magnetic field (Panel B) in a Babcock–Leighton model of the solar cycle.
This solution is computed for solar-like differential rotation and meridional circulation, the latter here
closing at the core-envelope interface. The core-to-envelope contrast in magnetic diffusivity is Δ𝜂 = 1/300,
the envelope diffusivity 𝜂T = 2.5× 1011 cm2 s−1, and the (poleward) mid-latitude surface meridional flow
speed is 𝑢0 = 16 m s−1.
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Although it exhibits the desired equatorward propagation, the toroidal field butterfly diagram
in Panel A of Figure 18 peaks at much higher latitude (∼ 45°) than the sunspot butterfly diagram
(∼ 15° – 20°, cf. Figure 3). This occurs because this is a solution with high magnetic diffusivity
contrast, where meridional circulation closes at the core-envelope interface, so that the latitudinal
component of differential rotation dominates the production of the toroidal field, a situation that
persists in models using more realistic differential profiles taken from helioseismic inversions (see
Muñoz-Jaramillo et al., 2009). This difficulty can be alleviated by letting the meridional circulation
penetrate below the core-envelope interface. Solutions with such flows are presented, e.g., in Dikpati
and Charbonneau (1999) and Nandy and Choudhuri (2001, 2002). These latter authors have argued
that this is in fact essential for a solar-like butterfly diagram to materialize, but this conclusion
appears to be model-dependent at least to some degree (Guerrero and Muñoz, 2004; Guerrero and
de Gouveia Dal Pino, 2007; Muñoz-Jaramillo et al., 2009). From the hydrodynamical standpoint,
the boundary layer analysis of Gilman and Miesch (2004) (see also Rüdiger et al., 2005) indicates
no significant penetration below the base of the convective envelope, although this conclusion
has not gone unchallenged (see Garaud and Brummell, 2008), leaving the whole issue somewhat
muddled at this juncture. The present-day observed solar abundances of Lithium and Beryllium
restrict the penetration depth to 𝑟/𝑅 ≃ 0.62 (Charbonneau, 2007b), which is unfortunately too
deep to pose very useful constraints on dynamo models, so that the final word will likely come
from helioseismology, hopefully in the not too distant future.

A noteworthy property of this class of model is the dependency of the cycle period on model
parameters; over a wide portion of parameter space, the meridional flow speed is found to be the
primary determinant of the cycle period 𝑃 . For example, in the Dikpati and Charbonneau (1999)
model, this quantity is found to scale as

𝑃 = 56.8𝑢−0.89
0 𝑠−0.13

0 𝜂0.22T [yr]. (34)

This behavior arises because, in these models, the two source regions are spatially segregated, and
the time required for circulation to carry the poloidal field generated at the surface down to the
tachocline is what effectively sets the cycle period. The corresponding time delay introduced in
the dynamo process has rich dynamical consequences, to be discussed in Section 5.4 below. The
weak dependency of 𝑃 on 𝜂T and on the magnitude 𝑠0 of the poloidal source term is very much
unlike the behavior typically found in mean-field models, where both these parameters usually play
a dominant role in setting the cycle period. The analysis of Hathaway et al. (2003) supports the
idea that the solar cycle period is indeed set by the meridional flow speed (but do see Schmitt and
Schüssler, 2004, for an opposing viewpoint). As demonstrated by Jouve et al. (2010), interesting
constraints can also be obtained from the observed dependence of stellar cycle periods on rotation
rates.

An interesting variation on the above model follows from the inclusion of turbulent pumping.
With the expected downward pumping throughout the bulk of the convective envelope, and with
a significant equatorward latitudinal component at low latitudes, the Babcock–Leighton mecha-
nism can lead to dynamo action even if the meridional flow is constrained to the upper portion
of the convective envelope. Downward turbulent pumping then links the two sources regions, and
latitudinal pumping provides the needed equatorward concentration of the deep-seated toroidal
component. An example taken from Guerrero and de Gouveia Dal Pino (2008) is shown in Fig-
ure 19. In this specific solution the circulation penetrates only down to 𝑟/𝑅 = 0.8, and the radial
and latitudinal peak pumping speed are 𝛾𝑟0 = 0.3 m s−1 and 𝛾𝜃0 = 0.9 m s−1, respectively.

With downward turbulent pumping now the primary mechanism linking the surface and tachocline,
the dynamo period loses sensitivity to the meridional flow speeds, and becomes set primary by the
radial pumping speed. Indeed the dynamo solutions presented Guerrero and de Gouveia Dal Pino
(2008) are found to obey a scaling law of the form

𝑃 = 181.2𝑢−0.12
0 𝛾−0.51

𝑟0 𝛾−0.05
𝜃0 [yr], (35)
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Figure 19: Time-latitude diagrams of the toroidal field at the core-envelope interface (Panel A), and radial
component of the surface magnetic field (Panel B) in a Babcock–Leighton model of the solar cycle with a
meridional flow restricted to the upper half of the convective envelope, and including (parametrized) radial
and latitudinal turbulent pumping. This is a solution from Guerrero and de Gouveia Dal Pino (2008) (see
their Section 3.3 and Figure 5), but the overall modelling framework is almost identical to that described
earlier, and used to generate Figure 18. The core-to-envelope contrast in magnetic diffusivity is Δ𝜂 = 1/100,
the envelope diffusivity 𝜂T = 1011 cm2 s−1, and the (poleward) mid-latitude surface meridional flow speed
is 𝑢0 = 13 m s−1 (figure produced from numerical data kindly provided by G. Guerrero).
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over a fairly wide range of parameter values. The radial pumping speed 𝛾𝑟0 emerges here as the
primary determinant of the cycle period. Finally, one can note in Figure 19 that the surface mag-
netic field no longer shows the strong concentration in the polar region that usually characterizes
Babcock–Leighton dynamo solutions operating in the advection-dominate regime. This can be
traced primarily to the efficient downward turbulent pumping that subducts the poloidal field as
it is carried poleward by the meridional flow.

4.8.3 Critical assessment

As with most models including meridional circulation published to date, Babcock–Leighton dynamo
models usually produce excessively strong polar surface magnetic fields. While this difficulty can
be fixed by increasing the magnetic diffusivity in the outermost layers, in the context of the
Babcock–Leighton models this then leads to a much weaker poloidal field being transported down
to the tachocline, which can be problematic from the dynamo point-of-view. On this see Dikpati
et al. (2004) for illustrative calculations, and Mason et al. (2002) on the closely related issue of
competition between surface and deep-seated 𝛼-effect. The model calculations of Guerrero and
de Gouveia Dal Pino (2008) suggest that downward turbulent pumping may be a better option to
reduce the strength of the polar field without impeding dynamo action.

Because of the strong amplification of the surface poloidal field in the poleward-converging
meridional flow, Babcock–Leighton models tend to produce a significant – and often dominant –
polar branch in the toroidal field butterfly diagram. Many of the models explored to date tend to
produce symmetric-parity solutions when computed pole-to-pole over a full meridional plane (see,
e.g., Dikpati and Gilman, 2001), but it is not clear how serious a problem this is, as relatively
minor changes to the model input ingredients may flip the dominant parity (see Chatterjee et al.,
2004; Charbonneau, 2007a, for specific examples). Nonetheless, in the advection-dominated regime
there is definitely a tendency for the quadrupolar symmetry of the meridional flow to imprint itself
on the dynamo solutions. A related difficulty, in models operating in the advection-dominated
regime, is the tendency for the dynamo to operate independently in each solar hemisphere, so that
cross-hemispheric synchrony is lost (Charbonneau, 2005, 2007a; Chatterjee and Choudhuri, 2006).

Because the Babcock–Leighton mechanism is characterized by a lower operating threshold, the
resulting dynamo models are not self-excited. On the other hand, the Babcock–Leighton mecha-
nism is expected to operate even for toroidal fields exceeding equipartition, the main uncertainties
remaining the level of amplification taking place when sunspot-forming toroidal flux ropes form
from the dynamo-generated mean magnetic field. The nonlinear behavior of this class of models, at
the level of magnetic backreaction on the differential rotation and meridional circulation, remains
largely unexplored.

4.9 Numerical simulations of solar dynamo action

Ultimately, the solar dynamo problem should be tackled as a (numerical) solution of the complete
set of MHD partial differential equations in a rotating, stratified spherical domain undergoing
thermally-driven turbulent convection in its outer 30% in radius. The first full-fledged attempts
to do so go back some some thirty years, to the simulations of Gilman and Miller (1981); Gilman
(1983); Glatzmaier (1985a,b). These epoch-making simulations did produce cyclic dynamo action
and latitudinal migratory patterns suggestive of the dynamo waves of mean-field theory. How-
ever, the associated differential rotation profile turned out non-solar, as did the magnetic field’s
spatio-temporal evolution. In retrospect this is perhaps not surprising, as limitations in computing
resources forced these simulations to be carried out in a parameter regime far removed from solar
interior conditions. Later simulations taking advantages of massively parallel computing archi-
tectures did managed to produce tolerably solar-like mean internal differential rotation (see, e.g.,
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Miesch and Toomre, 2009, and references therein), as well as copious small-scale magnetic field,
but failed to generate a spatially well-organized large-scale magnetic component (see Brun et al.,
2004). Towards this end the inclusion of a stably stratified fluid layer below the convecting layers
is now believed to be advantageous (although not strictly necessary, see Brown et al., 2010) as
it allows the development of a tachocline-like shear layer where magnetic field produced within
the convection zone can accumulate in response to turbulent pumping from above, and be further
amplified by the rotational shear (see Browning et al., 2006, also Tobias et al., 2001, 2008, and
references therein, for related behavior in local cartesian simulations).

Some of these simulations are now beginning to yield regular polarity reversals of the large-scale
magnetic components. Figures 20 and 21 present some sample results taken from Ghizaru et al.
(2010), see also Brown et al. (2009) and Käpylä et al. (2010). Figure 20 is an animation in Moll-
weide latitude-longitude projection of the toroidal magnetic component 0.02𝑅⊙ below the nominal
interface between the convecting layers and underlying stable layers in one of these simulations.
This toroidal component reaches some 2.5 kG here, and shows a very clear global antisymmetry
about the equator, despite strong spatiotemporal fluctuations produced by convective undershoot.
The cyclic variation of this large-scale field is quite apparent on the animation, with polarity
reversals approximately synchronous across hemispheres.

Figure 20: Still from a movie showing Latitude-Longitude Mollweide projection of the toroidal magnetic
component at depth 𝑟/𝑅 = 0.695 in the 3D MHD simulation of Ghizaru et al. (2010). This large-scale
axisymmetric component shows a well-defined overall antisymmetry about the equatorial plane, and un-
dergoes polarity reversals approximately every 30 yr. The animation spans a little over three half-cycles,
including three polarity reversals. Time is given in solar days, with 1 s.d. = 30 d. (To watch the movie,
please go to the online version of this review article at http://www.livingreviews.org/lrsp-2010-3.)

Figure 21A shows, for the same simulation as in Figure 20, a time-latitude diagram of the
zonally-averaged toroidal component, now constructed at a depth corresponding to the core-
envelope interface in the model. This is again assumed to be the simulation’s equivalent to the
sunspot butterfly diagram. This simulation was run for 255 yr, in the course of which eight polarity
reversals have taken place, with a mean (half-)period of about 30 yr. Note the tendency for equa-
torward migration of the toroidal flux structures, and the good long-term synchrony between the
Northern and Southern hemispheres, persisting despite significant fluctuations in the amplitude
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and duration of cycles in each hemiphere. Figure 21B shows the corresponding time-evolution of
the zonaly-averaged radial surface magnetic component, again in a time-latitude diagram. The
surface field is characterized by a well-defined dipole moment aligned with the rotational axis,
with transport of surface fields taking place from lower latitudes and (presumably) contributing to
the reversal of the dipole moment. Compare these time-latitude diagrams to the sunspot butterfly
diagram of Figure 3 and synoptic magnetogram of Figure 4, and reflect upon the similarities and
differences.

Figure 21: (A) Time-latitude diagram of the zonally-averaged toroidal magnetic component the core-
envelope interface (𝑟/𝑅 = 0.718) and (B) corresponding time-latitude diagram of the surface radial field,
in the 3D MHD simulations presented in Ghizaru et al. (2010). Note the regular polarity reversals, the
weak but clear tendency towards equatorial migration of the deep toroidal magnetic component, and the
good coupling between the two hemispheres despite marked fluctuations in successive cycles. The color
scale codes the magnetic field strength, in Tesla.

Although much remains to be investigated regarding the mode of dynamo action in these
simulations, some encouraging links to mean-field theory (Section 3.2.1) do emerge. The fact that
a positive toroidal component breeds here a positive dipole moment is what one would expect
from a turbulent 𝛼-effect (more precisely, the 𝛼𝜑𝜑 tensor component) positive in the Northern
hemisphere. A posteriori calculation of the mean electromotive force ℰ = ⟨u′ ×B′⟩ does reveal a
clear hemispheric pattern, with ℰ𝜑 having the same sign in both hemisphere, but changing sign
from one cycle to the next, again consistent with the idea that the turbulent 𝛼-effect is the primary
source of the large-scale poloidal component. Likewise, having a well-defined axisymmetric dipolar
component being sheared by an axisymmetric differential rotation is consistent with the buildup
of a large-scale toroidal component antisymmetric about the equatorial plane.

On the other hand, calculation of the 𝑟 and 𝜃-components of the mean electromotive force
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indicates that the latter contributes to the production of the toroidal field at a level comparable
to shearing of the poloidal component by differential rotation, suggestive of what, in mean-field
electrodynamics parlance, is known as an 𝛼2Ω dynamo. Calculation of the 𝛼-tensor components
also reveals that the latter do not undergo significant variations between maximal and minimal
phases of the cycle, suggesting that 𝛼-quenching is not the primary amplitude-limiting mechanism
in this specific simulation run. Although it would premature to claim that these simulations
vindicate the predictions of mean-field theory, to the level at which they have been analyzed thus
far, they do not appear to present outstanding departures from the mean-field Weltanschau.
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5 Amplitude Fluctuations, Multiperiodicity, and GrandMin-
ima

Since the basic physical mechanism(s) underlying the operation of the solar cycle are not yet
agreed upon, attempting to understand the origin of the observed fluctuations of the solar cycle
may appear to be a futile undertaking. Nonetheless, work along these lines continues at full
steam in part because of the high stakes involved; varying levels of solar activity may contribute
significantly to climate change (see Haigh, 2007, and references therein). Moreover, the frequencies
of all eruptive phenomena relevant to space weather are strongly modulated by the amplitude of
the solar cycle. Finally, certain aspects of the observed fluctuations may actually hold important
clues as to the physical nature of the dynamo process.

5.1 The observational evidence: An overview

Hathaway (2010) offers a comprehensive review of the observational phenomenology of the solar
cycle, as viewed through the sunspot number and other activity indicators; what follows is restricted
to feature having most direct bearing on dynamo modeling. Panel A of Figure 22 shows a time series
of the so-called Zürich sunspot numbers, starting in the mid-eighteenth century and extending to
the present. The 11-year sunspot cycle is the most obvious feature of this time series, although
the period of the underlying magnetic cycle is in fact twice that (sunspot counts being insensitive
to magnetic polarity). Cycle-to-cycle variations in sunspot counts are usually taken to indicate a
corresponding variation in the amplitude of the Sun’s dynamo-generated internal magnetic field.
As reasonable as this may sound, it remains a working assumption; at this writing, the process
via which the dynamo-generated mean magnetic field produces sunspot-forming concentrated flux
ropes is not understood. One should certainly not take for granted that a difference by a factor of
two in sunspot count indicates a corresponding variation by a factor of two in the strength of the
internal magnetic field.

At any rate, the notion of a nicely regular 11/22-year cycle does not hold long upon even cursory
scrutiny, as the amplitude of successive cycles is clearly not constant, and their overall shape often
differs significantly from one cycle to another (cf. cycles 14 and 15 in Panel A of Figure 22). Closer
examination of Figure 22 also reveals that even the cycle’s duration is not uniform, spanning in
fact a range going from 9 yr (cycle 2) to nearly 14 yr (cycles 4 and 23). These amplitude and
duration variations are not a sunspot-specific artefact; similar variations are in fact observed in
other activity proxies with extended records, most notably the 10.7 cm radio flux (Tapping, 1987),
polar faculae counts (Sheeley Jr, 1991), and the cosmogenic radioisotopes 14C and 10Be (Beer
et al., 1991; Beer, 2000).

Equally striking is the pronounced dearth of sunspots in the interval 1645 – 1715 (see Panel C
of Figure 22); this is not due to lack of observational data (see Ribes and Nesme-Ribes, 1993; Hoyt
and Schatten, 1996), but represents instead a phase of strongly suppressed activity now known
as the Maunder Minimum (Eddy, 1976, 1983, and references therein). Evidence from cosmogenic
radioisotopes indicates that similar periods of suppressed activity have taken place in ca. 1282 –
1342 (Wolf Minimum) and ca. 1416 – 1534 (Spörer Minimum), as well as a period of enhanced
activity in ca. 1100 – 1250 (the Medieval Maximum), and have recurred irregularly over the more
distant past (Usoskin, 2008).

The various incarnations of the sunspot number time series (monthly SSN, 13-month smoothed
SSN, yearly SSN, etc.) are arguably the most intensely studied time series in astrophysics, as
measured by the number of published research paper pages per data points. Various correlations
and statistical trends have been sought in these datasets. Panels D and E of Figure 22 present
two such classical trends. The “Waldmeier Rule”, illustrated in Panel D of Figure 22, refers to
a statistically significant anticorrelation between cycle amplitude and rise time (linear correlation
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Figure 22: Fluctuations of the solar cycle, as measured by the sunspot number. Panel A is a time series of
the Zürich monthly sunspot number (with a 13-month running mean in red). Cycles are numbered after the
convention introduced in the mid-nineteenth century by Rudolf Wolf. Note how cycles vary significantly in
both amplitude and duration. Panel B is a portion of the 10Be time series spanning the Maunder Minimum
(data courtesy of J. Beer). Panel C shows a time series of the yearly group sunspot number of Hoyt and
Schatten (1998) (see also Hathaway et al., 2002) over the same time interval, together with the yearly
Zürich sunspot number (purple) and auroral counts (green). Panels D and E illustrate the pronounced
anticorrelation between cycle amplitude and rise time (Waldmeier Rule), and alternation of higher-than-
average and lower-that-average cycle amplitudes (Gnevyshev–Ohl Rule, sometimes also referred to as the
“odd-even effect”).
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coefficient 𝑟 = −0.68). A similar anticorrelation exists between cycle amplitude and duration, but
is statistically more dubious (𝑟 = −0.37). The “Gnevyshev–Ohl” rule, illustrated in Panel E of
Figure 22, refers to a marked tendency for odd (even) numbered cycles to have amplitudes above
(below) their running mean (blue line in Panel E of Figure 22), a pattern that seems to have held
true without interruption between cycles 9 and 21 (see also Mursula et al., 2001). For more on
these empirical sunspot “Rules”, see Hathaway (2010).

A number of long-timescale modulations have also been extracted from these data, most notably
the so-called Gleissberg cycle (period = 88 yr), but the length of the sunspot number record is
insufficient to firmly establish the reality of these periodicities. One must bring into the picture
additional solar cycle proxies, primarily cosmogenic radioisotopes, but difficulties in establishing
absolute amplitudes of production rates introduce additional uncertainties into what is already
a complex endeavour (for more on these matters, see Beer, 2000; Usoskin and Mursula, 2003).
Likewise, the search for chaotic modulation in the sunspot number time series has produced a
massive literature (see, e.g., Feynman and Gabriel, 1990; Mundt et al., 1991; Carbonell et al., 1994;
Rozelot, 1995, and references therein), but without really yielding firm, statistically convincing
conclusions, again due to the insufficient lengths of the datasets.

The aim in this section is to examine in some detail the types of fluctuations that can be
produced in the various dynamo models discussed in the preceding section9. After going briefly
over the potential consequences of fossil fields (Section 5.2), dynamical nonlinearities are first
considered (Section 5.3), followed by time-delay effects (Section 5.4). We then turn to stochastic
forcing (Section 5.5), which leads naturally to the issue of intermittency (Section 5.6).

5.2 Fossil fields and the 22-yr cycle

The presence of a large-scale, quasi-steady magnetic field of fossil origin in the solar interior has
long been recognized as a possible explanation of the Gnevyshev–Ohl rule (Panel E of Figure 22).
The basic idea is quite simple: The slowly-decaying, deep fossil field being effectively steady on
solar cycle timescales, its superposition with the 11-yr polarity reversal of the overlying dynamo-
generated field will lead to a 22-yr modulation, whereby the cycle is stronger when the fossil and
dynamo field have the same polarity, and weaker when these polarities are opposite (see, e.g., Boyer
and Levy, 1984; Boruta, 1996). The magnitude of the effect is directly related to the strength of
the fossil field, versus that of the dynamo-generated magnetic field. All of this, however, presumes
that flows and dynamical effects within the tachocline still allow “coupling” between the deep
fossil field below, and the cyclic dynamo-generated field above. However, models of the solar
tachocline taking into account its interaction with an underlying fossil field (see, e.g., Kitchatinov
and Rüdiger, 2006) suggest that it is unlikely for this coupling to take place in the simple manner
implicitly assumed in dynamo models, that typically incorporate the effect of fossil fields via the
lower boundary condition (see also Dikpati et al., 2005).

One strong prediction is associated with this explanation of the Gnevyshev–Ohl rule: While the
pattern may become occasionally lost due to large amplitude fluctuations of other origin, whenever
it is present even-numbered cycles should always be of lower amplitudes and odd-numbered cycles
of higher amplitude (under Wolf’s cycle numbering convention). Evidently, this prediction can be
tested observationally, provided one can establish a measure of sunspot cycle amplitude that is
truly characteristic of the strength of the underlying dynamo magnetic field. Taken at face value,
the analysis of Mursula et al. (2001), based on cycle-integrated group sunspot numbers, indicates
that the odd/even pattern has reversed between the time periods 1700 – 1800 and 1850 – 1990 (see
their Figure 1). This would then rule out the fossil field hypothesis unless, as argued by some

9 We largely exclude from the foregoing discussion mathematical toy-models that aim exclusively at reproducing
the shape of the sunspot number time series. For recent entry points in this literature, see, e.g., Mininni et al.
(2002).
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authors (see Usoskin et al., 2009a, and references therein), a sunspot cycle has been “lost” around
1790, at the onset of the so-called Dalton minimum.

5.3 Dynamical nonlinearity

5.3.1 Backreaction on large-scale flows

The dynamo-generated magnetic field will, in general, produce a Lorentz force that will tend to
oppose the driving fluid motions. This is a basic physical effect that should be included in any
dynamo model. It is not at all trivial to do so, however, since in a turbulent environment both
the fluctuating and mean components of the magnetic field can affect both the large-scale flow
components, as well as the small-scale turbulent flow providing the Reynolds stresses powering the
large-scale flows. One can thus distinguish a number of (related) amplitude-limiting mechanisms:

� Lorentz force associated with the mean magnetic field directly affecting large-scale flow (some-
times called the “Malkus–Proctor effect”, after the groudbreaking numerical investigations
of Malkus and Proctor, 1975).

� Large-scale magnetic field indirectly affecting large-scale flow via effects on small-scale turbu-
lence and associated Reynolds stresses (sometimes called “Λ-quenching”, see, e.g., Kitchati-
nov and Rüdiger, 1993).

� Maxwell stresses associated with small-scale magnetic field directly affecting flows at all
scales.

The 𝛼-quenching formulae introduced in Section 4.2.1 is a particularly simple – some would say
simplistic – way to model the backreaction of the magnetic field on the turbulent fluid motions
producing the 𝛼-effect10. In the context of solar cycle models, one could also expect the Lorentz
force to reduce the amplitude of differential rotation until the effective dynamo number falls back
to its critical value, at which point the dynamo again saturates11. The third class of quenching
mechanism listed above has not yet been investigated in detail, but numerical simulations of MHD
turbulence indicate that the effects of the small-scale turbulent magnetic field on the 𝛼-effect can
be profound (see Pouquet et al., 1976; Durney et al., 1993; Brandenburg, 2009; Cattaneo and
Hughes, 2009).

Introducing magnetic backreaction on differential rotation is a tricky business, because one
must then also, in principle, provide a model for the Reynolds stresses powering the large-scale
flows in the solar convective envelope (see, e.g., Kitchatinov and Rüdiger, 1993), as well as a
procedure for computing magnetic backreaction on these. This rapidly leads into the unyielding
realm of MHD turbulence, although algebraic “Λ-quenching” formulae akin to 𝛼-quenching have
been proposed based on specific turbulence models (see, e.g., Kitchatinov et al., 1994). Alternately,
one can add an ad hoc source term to the right hand side of Equation (2), designed in such a way
that in the absence of the magnetic field, the desired solar-like large-scale flow is obtained. As a
variation on this theme, one can simply divide the large-scale flow into two components, the first
(U) corresponding to some prescribed, steady profile, and the second (U′) to a time-dependent
flow field driven by the Lorentz force (see, e.g., Tobias, 1997; Moss and Brooke, 2000; Thelen,
2000b):

u = U(x) +U′(x, 𝑡, ⟨B⟩), (36)

10 Dynamo saturation can also occur by magnetically-mediated changes in the “topological” properties of a
turbulent flow, without significant decrease in the turbulent flow amplitudes; see Cattaneo et al. (1996) for a nice,
simple example.

11 This effect has been found to be the dominant dynamo quenching mechanism in some numerical simulations
of dynamo action in a rotating, thermally-driven turbulent spherical shell (see, e.g., Gilman, 1983), as well as in
models confined to thin shells (DeLuca and Gilman, 1988).
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with the (non-dimensional) governing equation forU′ including only the Lorentz force and a viscous
dissipation term on its right hand side. If u amounts only to differential rotation, then U′ must
obey a (nondimensional) differential equation of the form

𝜕U′

𝜕𝑡
=

Λ

4𝜋𝜌
(∇× ⟨B⟩)× ⟨B⟩+ Pm∇2U, (37)

where time has been scaled according to the magnetic diffusion time 𝜏 = 𝑅2
⊙/𝜂T as before. Two

dimensionless parameters appear in Equation (37). The first (Λ) is a numerical parameter mea-
suring the influence of the Lorentz force, and which can be set to unity without loss of generality
(cf. Tobias, 1997; Phillips et al., 2002). The second, Pm = 𝜈/𝜂, is the magnetic Prandtl num-
ber. It measures the relative importance of viscous and Ohmic dissipation. When Pm ≪ 1, large
velocity amplitudes in U′ can be produced by the dynamo-generated mean magnetic field. This
effectively introduces an additional, long timescale in the model, associated with the evolution of
the magnetically-driven flow; the smaller Pm, the longer that timescale (cf. Figures 4 and 10 in
Brooke et al., 1998).

The majority of studies published thus far and using this approach have only considered the
nonlinear magnetic backreaction on differential rotation. This has been shown to lead to a va-
riety of behaviors, including amplitude and parity modulation, periodic or aperiodic, as well as
intermittency (more on the latter in Section 5.6).

Figure 23 shows two butterfly diagrams produced by the nonlinear mean-field interface model
of Tobias 1997 (see also Beer et al., 1998; Bushby, 2006). The model is defined on a Cartesian
slab with a reference differential rotation varying only with depth, and includes backreaction on
the differential rotation according to the procedure described above. The model exhibits strong,
quasi-periodic modulation of the basic cycle, leading to epochs of strongly reduced amplitude,
with the modulation period controlled by the magnetic Prandtl number. Note how the dynamo
can emerge from such epochs with strong hemispheric asymmetries (top panel), or with a different
parity (bottom panel).

It is not clear, at this writing, to what degree these behaviors are truly generic, as opposed
to model-dependent. The analysis of Knobloch et al. (1998) suggests that generic behaviors do
exist. On the other hand, a number of counterexamples have been published, showing that even
in a qualitative sense, the nonlinear behavior can be strongly dependent on what one would have
hoped to be minor modelling details (see, e.g., Moss and Brooke, 2000; Phillips et al., 2002).

The differential rotation can also be suppressed indirectly by magnetic backreaction on the
small-scale turbulent flows that produce the Reynolds stresses driving the large-scale mean flow.
Inclusion of this so-called “Λ-quenching” in mean-field dynamo models, alone or in conjunction
with other amplitude-limiting nonlinearities, has also been shown to lead to a variety of periodic
and aperiodic amplitude modulations, provided the magnetic Prandtl number is small (see Küker
et al., 1999; Pipin, 1999; Rempel, 2006b). This type of models stand or fall with the turbulence
model used to compute the various mean-field coefficients, and it is not yet clear which aspects of
the results are truly generic to Λ-quenching. Gizon and Rempel (2008) do show that information
is present in subsurface measurements of the time-varying component of large-scale flows, which
can be used to constrain the Λ-effect and its cycle-related variations.

To date, dynamical backreaction on large-scale flows has only been studied in detail in the
context of dynamo models based on mean-field electrodynamics. Equivalent studies must be carried
out in the other classes of solar cycle models discussed in Section 4. In particular, it is essential to
model the effect of the Lorentz force on meridional circulation in models based on the Babcock–
Leighton mechanism and/or hydrodynamical instabilities in the tachocline, since in these models
the circulation is the primary determinant of the cycle period and enforces equatorward propagation
in the butterfly diagram.
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Figure 23: Amplitude and parity modulation in a 1D slab dynamo model including magnetic backre-
action on the differential rotation. These are the usual time-latitude diagrams for the toroidal magnetic
field, now covering both solar hemispheres, and exemplify the two basic types of modulation arising in
nonlinear dynamo models with backreaction on the differential rotation (see text; figure kindly provided
by S.M. Tobias).
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5.3.2 Dynamical 𝛼-quenching

A number of authors have attempted to bypass the shortcomings of 𝛼-quenching by introducing into
dynamo models an additional, physically-inspired partial differential equation for the 𝛼-coefficient
itself (e.g., Kleeorin et al., 1995; Blackman and Brandenburg, 2002, and references therein). The
basic physical idea is that magnetic helicity must be conserved in the high-Rm regime, so that
production of helicity in the mean field implies a corresponding production of helicity of opposite
sign at the scales of the fluctuating components of the flow and field, which ends up acting in
such a way as to reduce the 𝛼-effect. Most investigations published to date have made used of
severely truncated models, and/or models in one spatial dimensions (see, e.g., Weiss et al., 1984;
Schmalz and Stix, 1991; Jennings and Weiss, 1991; Roald and Thomas, 1997; Covas et al., 1997;
Blackman and Brandenburg, 2002), so that the model results can only be compared to solar data in
some general qualitative sense. Rich dynamical behavior definitely arises in such models, including
multiperiodicity, amplitude modulation, and chaos, and some of these behaviors do carry over to
into a two-dimensional spherical axisymmetric mean-field dynamo model (see Covas et al., 1998).

5.4 Time-delay dynamics

The introduction of ad hoc time-delays in dynamo models is long known to lead to pronounced
cycle amplitude fluctuations (see, e.g., Yoshimura, 1978). Models including nonlinear backreaction
on differential rotation can also exhibit what essentially amounts to time-delay dynamics in the low
Prandtl number regime, with the large-scale flow perturbations lagging behind the Lorentz force
because of inertial effects. Finally, time-delay effects can arise in dynamo models where the source
regions for the poloidal and toroidal magnetic components are spatially segregated. This is a type
of time delay we now turn to, in the context of dynamo models based on the Babcock–Leighton
mechanism.

5.4.1 Time-delays in Babcock–Leighton models

It was already noted that in solar cycle models based on the Babcock–Leighton mechanism of
poloidal field generation, meridional circulation effectively sets – and even regulates – the cycle
period (cf. Section 4.8.2; see also Dikpati and Charbonneau, 1999; Charbonneau and Dikpati,
2000; Muñoz-Jaramillo et al., 2009). In doing so, it also introduces a long time delay in the
dynamo mechanism, “long” in the sense of being comparable to the cycle period. This delay
originates with the time required for circulation to advect the surface poloidal field down to the
core-envelope interface, where the toroidal component is produced (A→C in Figure 16). In contrast,
the production of poloidal field from the deep-seated toroidal field (C→D), is a “fast” process,
growth rates and buoyant rise times for sunspot-forming toroidal flux ropes being of the order
of a few months (see Moreno-Insertis, 1986; Fan et al., 1993; Caligari et al., 1995, and references
therein). The first, long time delay turns out to have important dynamical consequences.

5.4.2 Reduction to an iterative map

The long time delay inherent in B-L models of the solar cycle allows a formulation of cycle-to-
cycle amplitude variations in terms of a simple one-dimensional iterative map (Durney, 2000;
Charbonneau, 2001). Working in the kinematic regime, neglecting resistive dissipation, and in
view of the conveyor belt argument of Section 4.8, the toroidal field strength 𝑇𝑛+1 at cycle 𝑛+ 1
is assumed to be linearly proportional to the poloidal field strength 𝑃𝑛 of cycle 𝑛, i.e.,

𝑇𝑛+1 = 𝑎𝑃𝑛. (38)

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2010-3

http://www.livingreviews.org/lrsp-2010-3


58 Paul Charbonneau

Now, because flux eruption is a fast process, the strength of the poloidal field at cycle 𝑛 + 1 is
(nonlinearly) proportional to the toroidal field strength of the current cycle:

𝑃𝑛+1 = 𝑓(𝑇𝑛+1)𝑇𝑛+1. (39)

Here the “Babcock–Leighton” function 𝑓(𝑇𝑛+1) measures the efficiency of surface poloidal field
production from the deep-seated toroidal field. Substitution of Equation (38) into Equation (39)
leads immediately to a one-dimensional iterative map,

𝑝𝑛+1 = 𝛼𝑓(𝑝𝑛)𝑝𝑛, (40)

where the 𝑝𝑛’s are normalized amplitudes, and the normalization constants as well as the constant
𝑎 in Equation (38) have been absorbed into the definition of the map’s parameter 𝛼, here opera-
tionally equivalent to a dynamo number (see Charbonneau, 2001). We consider here the following
nonlinear function,

𝑓(𝑝) =
1

4

[︂
1 + erf

(︂
𝑝− 𝑝1
𝑤1

)︂]︂[︂
1− erf

(︂
𝑝− 𝑝2
𝑤2

)︂]︂
, (41)

with 𝑝1 = 0.6, 𝑤1 = 0.2, 𝑝2 = 1.0, and 𝑤2 = 0.8. This catches an essential feature of the B-L
mechanism, namely the fact that it can only operate in a finite range of toroidal field strength.

A bifurcation diagram for the resulting iterative map is presented in Panel A of Figure 24. For
a given value of the map parameter 𝛼, the diagram gives the locus of the amplitude iterate 𝑝𝑛 for
successive 𝑛 values. The “critical dynamo number” above which dynamo action becomes possible,
is here 𝛼 = 0.851 (𝑝𝑛 = 0 for smaller 𝛼 values). For 0.851 ≤ 𝛼 ≤ 1.283, the iterate is stable at
some finite value of 𝑝𝑛, which increases gradually with 𝛼. This corresponds to a constant amplitude
cycle. As 𝛼 reaches 1.283, period doubling occurs, with the iterate 𝑝𝑛 alternating between high
and low values (e.g., 𝑝𝑛 = 0.93 and 𝑝𝑛 = 1.41 at 𝛼 = 1.4). Further period doubling occurs at
𝛼 = 1.488, then at 𝛼 = 1.531, then again at 𝛼 = 1.541, and ever faster until a point is reached
beyond which the amplitude iterate seems to vary without any obvious pattern (although within
a bounded range); this is in fact a chaotic regime.

As in any other dynamo model where the source regions for the poloidal and toroidal magnetic
field components are spatially segregated, the type of time delay considered here is unavoidable.
The B-L model is just a particularly clear-cut example of such a situation. One is then led to
anticipate that the map’s rich dynamical behavior should find its counterpart in the original,
arguably more realistic spatially-extended, diffusive axisymmetric model that inspired the map
formulation. Remarkably, this is indeed the case.

Panel B of Figure 24 shows a bifurcation diagram, conceptually equivalent to that shown in
Panel A, but now constructed from a sequence of numerical solutions of the Babcock–Leighton
model of Charbonneau et al. (2005), for increasing values of the dynamo number. Time series
of magnetic energy were calculated from the numerical solutions, and successive peaks found and
plotted for each individual solution. The sequence of period doubling, eventually leading to a
chaotic regime, is strikingly similar to the bifurcation diagram constructed from the corresponding
iterative map, down to the narrow multiperiodic windows interspersed in the chaotic domain. This
demonstrates that time delay effects are a robust feature, and represent a very powerful source of
cycle amplitude fluctuation in Babcock–Leighton models, even in the kinematic regime (for further
discussion see Charbonneau, 2001; Charbonneau et al., 2005; Wilmot-Smith et al., 2006).

5.5 Stochastic forcing

Another means of producing amplitude fluctuations in dynamo models is to introduce stochastic
forcing in the governing equations. Sources of stochastic “noise” certainly abound in the solar
interior; large-scale flows in the convective envelope, such as differential rotation and meridional
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Figure 24: Two bifurcation diagrams for a kinematic Babcock–Leighton model, where amplitude fluc-
tuations are produced by time-delay feedback. The top diagram is computed using the one-dimensional
iterative map given by Equations (40, 41), while the bottom diagram is reconstructed from numerical
solutions in spherical geometry, of the type discussed in Section 4.8. The shaded area in Panel A maps the
attraction basin for the cyclic solutions, with initial conditions located outside of this basin converging to
the trivial solution 𝑝𝑛 = 0.
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circulation, are observed to fluctuate, an unavoidable consequence of dynamical forcing by the
surrounding, vigorous turbulent flow. Ample observational evidence now exists that a substan-
tial portion of the Sun’s surface magnetic flux is continuously being reprocessed on a timescale
commensurate with convective motions (see Schrijver et al., 1997; Hagenaar et al., 2003). The
culprit is most likely the generation of small-scale magnetic fields by these turbulent fluid motions
(see, e.g., Cattaneo, 1999; Cattaneo et al., 2003, and references therein). This amounts to a form
of zero-mean “noise” superimposed on the slowly-evolving mean magnetic field. In addition, the
azimuthal averaging implicit in all models of the solar cycle considered above will yield dynamo
coefficients showing significant deviations about their mean values, as a consequence of the spatio-
temporally discrete nature of the physical events (e.g., cyclonic updrafts, sunspot emergences, flux
rope destabilizations, etc.) whose collective effects add up to produce a mean azimuthal electro-
motive force.

The (relative) geometrical and dynamical simplicity of the various types of dynamo models con-
sidered earlir severely restricts the manner in which such stochastic effects can be modeled. Perhaps
the most straightforward is to let the dynamo number fluctuate randomly in time about some pre-
set mean value. By most statistical estimates, the expected magnitude of these fluctuations is
quite large, i.e., many times the mean value (Hoyng, 1988, 1993), a conclusion also supported by
numerical simulations (see, e.g., Otmianowska-Mazur et al., 1997; Ossendrijver et al., 2001). One
typically also introduces a coherence time during which the dynamo number retains a fixed value.
At the end of this time interval, this value is randomly readjusted. Depending on the dynamo
model at hand, the coherence time can be physically related to the lifetime of convective eddies (𝛼-
effect-based mean-field models), to the decay time of sunspots (Babcock–Leighton models), or to
the growth rate of instabilities (hydrodynamical shear or buoyant MHD instability-based models).

Figure 25 shows some representative results for an 𝛼Ω dynamo solutions including meridional
circulation and operating in the advection-dominated regime, similar to that of Figure 11, with
imposed stochastic fluctuation at the ± 100% level in 𝐶𝛼, and coherence time amounting to 5% of
the cycle period in the deterministic parent solution. The red curve is the total magnetic energy in
the solution domain, used here as a measure of cycle amplitude and proxy for the sunspot number.
The green curve is the absolute value of the N-hemisphere surface polar field strength. Perhaps the
most striking feature of these curves is the fact that even with a coherence time much smaller than
the cycle period, zero-mean stochastic forcing can induce patterns of amplitude modulation with
characteristic timescales spanning many cycles (e.g., at 0.01 ≤ 𝑡/𝜏 ≤ 0.11 and 0.49 ≤ 𝑡/𝜏 ≤ 0.62
in Figure 25A). This can be traced to the buildup of strong magnetic fields in the low-diffusivity
layers underlying the convective envelope.

Stochastic forcing of the dynamo number can also produce a significant spread in cycle period,
although in the model run used to produce Figure 25 the very weak positive correlation between
cycle amplitude and rise time is anti-solar (the Waldmeier rule has 𝑟 = −0.68, based on smoothed
monthly SSN, cf. Figure 22D), and the positive correlation between rise time and cycle duration
(𝑟 = +0.27, not shown) is comparable to solar (𝑟 = +0.4). It must be kept in mind that these
inferences are all predicated on the use of total magnetic energy as a SSN proxy; different choices
can lead to varying degrees of correlation.

The effect of noise has been investigated in most detail in the context of classical mean-field
models (see Choudhuri, 1992; Hoyng, 1993; Ossendrijver and Hoyng, 1996; Ossendrijver et al.,
1996; Mininni and Gómez, 2002, 2004; Moss et al., 2008). A particularly interesting consequence
of random variations of the dynamo number, in mean-field models at or very close to criticality, is
the coupling of the cycle’s duration and amplitude (Hoyng, 1993; Ossendrijver and Hoyng, 1996;
Ossendrijver et al., 1996), leading to a pronounced anticorrelation between these two quantities
that is reminiscent of the Waldmeier Rule (cf. Panel D of Figure 22), and hard to produce by
purely nonlinear effects (cf. Ossendrijver and Hoyng, 1996). However, this behavior does not
carry over to the supercritical regime, so it is not clear whether this can indeed be accepted
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Figure 25: Effect of stochastic fluctuations in the 𝐶𝛼 dynamo number on an advection-dominated 𝛼Ω
mean-field dynamo solution including meridional circulation (see Figure 11), here with Rm = 2500, 𝐶Ω =
5 × 105, 𝐶𝛼 = 0.5, and Δ𝜂 = 0.1. The fluctuation amplitude is 𝛿𝐶𝛼/𝐶𝛼 = 1, and the correlation time of
the imposed fluctuations amounts to about 5% of the mean half-cycle period. Panel A shows a portion of
the time series of total magnetic energy (red), used here as a proxy for cycle amplitude, and of the surface
polar field strength (green), both scaled to their peak value over the full simulation run. Panel B shows a
correlation plot of cycle amplitude and duration, both now normalized to their respective means over the
simulation interval. Panel C snows a correlation plot of cycle amplitude versus the preceding peak value
of the surface polar field.
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as a robust explanation of the observed amplitude-duration anticorrelation. In the supercritical
regime, 𝛼-quenched mean-field models are less sensitive to noise (Choudhuri, 1992), unless of course
they happen to operate close to a bifurcation point, in which case large amplitude and/or parity
fluctuations can be produced (see, e.g., Moss et al., 1992).

In the context of Babcock–Leighton models, introducing stochastic forcing of the dynamo num-
bers leads to amplitude fluctuation patterns qualitatively similar to those plotted in Figure 25: long
timescale amplitude modulation, spread in cycle period, (non-solar) positive correlations between
cycle amplitude and rise time, and (solar-like) positive correlation between duration and rise time,
with the interesting addition that in some model formulations cycle-to-cycle amplitude variation
patterns reminiscent of the Gnevyshev–Ohl Rule are also produced (see Charbonneau et al., 2007).
Charbonneau and Dikpati (2000) have presented a series of dynamo simulations including stochas-
tic fluctuations in the dynamo number as well as in the meridional circulation. Working in the
supercritical regime with a form of algebraic 𝛼-quenching as the sole amplitude-limiting nonlin-
earity, they succeed in producing a solar-like weak anticorrelation between cycle amplitude and
duration for fluctuations in the dynamo numbers in excess of 200% of its mean value, with coher-
ence time of one month. However, these encouraging results did not prove very robust across the
model’s parameter space.

A different approach is followed by Passos and Lopes (2008) and Lopes and Passos (2009),
who used a low-order dynamo model resulting from truncation of the 2D axisymmetric mean-field
dynamo equations, with flux loss due to magnetic buoyancy as the amplitude-limiting nonlinearity.
Fitting equilibrium solutions to their low-order model to the smoothed SSN time series, one mag-
netic cycle at a time (Figure 26A), they can plausibly interpret variations in their fitting parameters
as being due to systematic, persistent variations of the meridional flow speed on decadal timescales
(Figure 26B). They then input these variations in the kinematic axisymmetric Babcock–Leighton
model of Chatterjee et al. (2004), conceptually similar to that described in Section 4.8 but replacing
the nonlinearity on the poloidal source term by a threshold function for magnetic flux loss through
magnetic buoyancy. The resulting SSN-proxy time series reconstructed in this manner shows some
remarkable similarities to the true SSN time series, including an epoch of strongly reduced cycle
amplitude in the opening decades of the nineteenth century, and secular rise of cycle amplitudes
from the mid-nineteenth to the mid-twentieth century (Figure 26C). This suggests that relatively
small but persistent changes in the meridional flow, at the ∼ 5 – 30% level, could account for much
of the variation in amplitude and duration observed in the solar cycle, and possibly even Grand
Minima of activity (see Passos and Lopes, 2009), the topic to which we now turn.

5.6 Intermittency

5.6.1 The Maunder Minimum and intermittency

The term “intermittency” was originally coined to characterize signals measured in turbulent flu-
ids, but has now come to refer more generally to systems undergoing apparently random, rapid
switching from quiescent to bursting behaviors, as measured by the magnitude of some suitable
system variable (see, e.g., Platt et al., 1993). Intermittency thus requires at least two distinct
dynamical states available to the system, and a means of transiting from one to the other.

In the context of solar cycle model, intermittency refers to the existence of quiescent epochs of
strongly suppressed activity randomly interspersed within periods of “normal” cyclic activity. Ob-
servationally, the Maunder Minimum is usually taken as the exemplar for such quiescent epochs.
It should be noted, however, that dearth of sunspots does not necessarily mean a halted cycle;
as noted earlier, flux ropes of strengths inferior to ∼ 10 kG will not survive their rise through
the convective envelope, and the process of flux rope formation from the dynamo-generated mean
magnetic field may itself be subjected to a threshold in field strength. The same basic magnetic
cycle may well have continued unabated all the way through the Maunder Minimum, but at an
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Figure 26: Effect of persistent variations in meridional circulation on the amplitude of the solar cycle, as
modeled by Lopes and Passos (2009). Panel A shows the signed square root of the sunspot number (gray),
here used as a proxy of the solar internal magnetic field. A smoothed version of this time series (black) is
fitted, one magnetic cycle at a time (green), with the equilibrium solution of the truncated dynamo model
of Passos and Lopes (2008); assuming that variations in the fitting parameters are due to variations in
the meridional flow speed (𝑣𝑝), the coarse time series of 𝑣𝑝 of panel B (in green) is obtained, scaled to the
magnetic cycle 1 value and with error bars from the fitting procedure. Input of this piecewise-constant
meridional flow variation (scaled down by a factor of two, in red in panel B) in the 2D Babcock–Leighton
dynamo model of Chatterjee et al. (2004) yields the pseudo-SSN time series plotted in Panel C (figure
produced from numerical data kindly provided by D. Passos).
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amplitude just below one of these thresholds. This idea finds support in the 10Be radioisotope
record, which shows a clear and uninterrupted cyclic signal through the Maunder Minimum (see
Panels B and C of Figure 22; also Beer et al., 1998). Strictly speaking, thresholding a variable con-
trolled by a single dynamical state subject to amplitude modulation is not intermittency, although
the resulting time series for the variable may well look quite intermittent.

Much effort has already been invested in categorizing intermittency-like behavior observed in
solar cycle models in terms of the various types of intermittency known to characterize dynamical
systems (see Ossendrijver and Covas, 2003, and references therein). In what follows, we attempt
to pin down the physical origin of intermittent behavior in the various types of solar cycle models
discussed earlier.

5.6.2 Intermittency from stochastic noise

Intermittency has been shown to occur through stochastic fluctuations of the dynamo number in
linear mean-field dynamo models operating at criticality (see, e.g., Hoyng, 1993). Such models also
exhibit a solar-like anticorrelation between cycle amplitude and phase. However there is no strong
reason to believe that the solar dynamo is running just at criticality, so that it is not clear how
good an explanation this is of Maunder-type Grand Minima.

Mininni and Gómez (2004) have presented a stochastically-forced 1D (in latitude) 𝛼Ω mean-
field model, including algebraic 𝛼-quenching as the amplitude-limiting nonlinearity, that exhibits
a form of intermittency arising from the interaction of dynamo modes of opposite parity. The
solution aperiodically produces episodes of markedly reduced cycle amplitude, and often showing
strong hemispheric asymmetry. This superficially resembles the behavior associated with the non-
linear amplitude modulation discussed in Section 5.3.1 (compare the top panel in Figure 23 herein
to Figure 7 in Mininni and Gómez, 2004). However, here it is the stochastic forcing that occasion-
ally excites the higher-order modes that perturb the normal operation of the otherwise dominant
dynamo mode. Moss et al. (2008) and Usoskin et al. (2009a) present more elaborate versions of
such models, that do reproduce many salient features of observed grand activity minima.

5.6.3 Intermittency from nonlinearities

Another way to trigger intermittency in a dynamo model, deterministically this time, is to let
nonlinear dynamical effects, for example a reduction of the differential rotation amplitude, push the
effective dynamo number below its critical value; dynamo action then ceases during the subsequent
time interval needed to reestablish differential rotation following the diffusive decay of the magnetic
field; in the low Pm regime, this time interval can amount to many cycle periods, but Pm must
not be too small, otherwise Grand Minima become too rare (see, e.g., Küker et al., 1999). Values
Pm ∼ 10−2 seem to work best. Such intermittency is most readily produced when the dynamo is
operating close to criticality. For representative models, see Tobias (1996b, 1997); Brooke et al.
(1998); Küker et al. (1999); Brooke et al. (2002).

Intermittency of this type has some attractive properties as a Maunder Minimum scenario.
First, the strong hemispheric asymmetry in sunspots distributions in the final decades of the
Maunder Minimum (Ribes and Nesme-Ribes, 1993) can occur naturally via parity modulation (see
Figure 23 herein). Second, because the same cycle is operating at all times, cyclic activity in
indicators other than sunspots (such as radioisotopes, see Beer et al., 1998) is easier to explain;
the dynamo is still operating and the solar magnetic field is still undergoing polarity reversal, but
simply fails to reach the amplitude threshold above which the sunspot-forming flux ropes can be
generated from the mean magnetic field, or survive their buoyant rise through the envelope.

There are also important difficulties with this explanatory scheme. Grand Minima tend to have
similar durations and recur in periodic or quasi-periodic fashion, while the sunspot and radioisotope
records, taken at face value, suggest a pattern far more irregular (Usoskin, 2008). Moreover, the
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dynamo solutions in the small Pm regime are characterized by large, non-solar angular velocity
fluctuations. In such models, solar-like, low-amplitude torsional oscillations do occur, but for
Pm ∼ 1. Unfortunately, in this regime the solutions then lack the separation of timescales needed
for Maunder-like Grand Minima episodes. One is stuck here with two conflicting requirements,
neither of which easily evaded (but do see Bushby, 2006).

Intermittency has also been observed in strongly supercritical model including 𝛼-quenching
as the sole amplitude-limiting nonlinearity. Such solutions can enter Grand Minima-like epochs
of reduced activity when the dynamo-generated magnetic field completely quenches the 𝛼-effect.
The dynamo cycle restarts when the magnetic field resistively decays back to the level where the
𝛼-effect becomes operational once again. The physical origin of the “long” timescale governing the
length of the “typical” time interval between successive Grand Minima episodes is unclear, and
the physical underpinning of intermittency harder to identify. For representative models exhibiting
intermittency of this type, see Tworkowski et al. (1998).

5.6.4 Intermittency from threshold effects

Intermittency can also arise naturally in dynamo models characterized by a lower operating thresh-
old on the magnetic field. These include models where the regeneration of the poloidal field takes
place via the MHD instability of toroidal flux tubes (Sections 4.7 and 3.2.3). In such models,
the transition from quiescent to active phases requires an external mechanism to push the field
strength back above threshold. This can be stochastic noise (see, e.g., Schmitt et al., 1996), or a
secondary dynamo process normally overpowered by the “primary” dynamo during active phases
(see Ossendrijver, 2000a). Figure 27 shows one representative solution of the latter variety, where
intermittency is driven by a weak 𝛼-effect-based kinematic dynamo operating in the convective
envelope, in conjunction with magnetic flux injection into the underlying region of primary dy-
namo action by randomly positioned downflows (see Ossendrijver, 2000a, for further details). The
top panel shows a sample trace of the toroidal field, and the bottom panel a butterfly diagram
constructed near the core-envelope interface in the model.

The model does produce irregularly-spaced quiescent phases, as well as an occasional “failed
minimum” (e.g., at 𝑡 ≃ 11), in qualitative agreement with the solar record. Note here how the onset
of a Grand Minimum is preceded by a gradual decrease in the cycle’s amplitude, while recovery to
normal, cyclic behavior is quite abrupt. The fluctuating behavior of this promising class of dynamo
models clearly requires further investigation.

5.6.5 Intermittency from time delays

Dynamo models exhibiting amplitude modulation through time-delay effects are also liable to
show intermittency in the presence of stochastic noise. This was demonstrated in Charbonneau
(2001) in the context of Babcock–Leighton models, using the iterative map formalism described in
Section 5.4.2. The intermittency mechanism hinges on the fact that the map’s attractor has a finite
basin of attraction (indicated by gray shading in Panel A of Figure 24). Stochastic noise acting
simultaneously with the map’s dynamics can then knock the solution out of this basin of attraction,
which then leads to a collapse onto the trivial solution 𝑝𝑛 = 0, even if the map parameter remains
supercritical. Stochastic noise eventually knocks the solution back into the attractor’s basin, which
signals the onset of a new active phase (see Charbonneau, 2001, for details).

A corresponding behavior was subsequently found in a spatially-extended model similar to that
described in Section 4.8 (see Charbonneau et al., 2004). Figure 28 shows one such representative
solution, in the same format as Figure 27. This is a dynamo solution which, in the absence of
noise, operates in the singly-periodic regime. Stochastic noise is added to the vector potential 𝐴ê𝜑
in the outermost layers, and the dynamo number is also allowed to fluctuate randomly about a
pre-set mean value. The resulting solution exhibits both amplitude fluctuations and intermittency.
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Figure 27: Intermittency in a dynamo model based on flux tube instabilities (cf. Sections 3.2.3 and 4.7).
The top panel shows a trace of the toroidal field, and the bottom panel is a butterfly diagram covering a
shorter time span including a quiescent phase at 9.6 . 𝑡 . 10.2, and a “failed minimum” at 𝑡 ≃ 11 (figure
produced from numerical data kindly provided by M. Ossendrijver).
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Figure 28: Intermittency in a dynamo model based on the Babcock–Leighton mechanism (cf. Sec-
tions 3.2.4 and 4.8). The top panel shows a trace of the toroidal field sampled at (𝑟, 𝜃) = (0.7, 𝜋/3).
The bottom panel is a time-latitude diagram for the toroidal field at the core-envelope interface (numerical
data from Charbonneau et al., 2004).
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With its strong polar branch often characteristic of dynamo models with meridional circulation,
Figure 28 is not a particularly good fit to the solar butterfly diagram, yet its fluctuating behavior is
solar-like in a number of ways, including epochs of alternating higher-than-average and lower-than-
average cycle amplitudes (the Gnevyshev–Ohl rule, cf. Panel E of Figure 22), and residual pseudo-
cyclic variations during quiescent phases, as suggested by 10Be data, cf. Panel B of Figure 22.
This later property is due at least in part to meridional circulation, which continues to advect the
(decaying) magnetic field after the dynamo has fallen below threshold (see Charbonneau et al.,
2004, for further discussion). Note also in Figure 28 how the onset of Grand Minima is quite
sudden, while recovery to normal activity is more gradual, which is the opposite behavior to the
Grand Minima in Figure 27.

5.7 Solar cycle predictions based on dynamo models

The idea that measurements of the solar surface magnetic field in the descending phase of a cycle
can be used to forecast the amplitude (and/or timing) of the next cycle goes back many decades,
but it is Schatten et al. (1978) who explicitly justified this procedure on the basis of dynamo
models, which led to a wide variety of dynamo-inspired precursor schemes (see Hathaway et al.,
1999, for a review).

This dynamo logic has recently been pushed further, by using dynamo models to actually
advance in time measurements of the solar surface magnetic field in order to produce a cycle
forecast. This approach is justified if the surface magnetic field is indeed a significant source
of the poloidal field to be sheared into a toroidal component in the upcoming cycle, so that
using this approach to forecasting already amounts to a strong assumption on the mode of solar
dynamo action. In the stochastically-forced flux-transport 𝛼Ω dynamo solution of Figure 25, a
strong correlation materializes between the peak polar field at cycle minimum, and amplitude of
the subsequent cycle (see panel C). This occurs because in this model the surface polar field is
advected down by the meridional flow to the dynamo source region at the base of the convection,
and ends up feeding back into the dynamo loop. In other types of dynamo models where this
feedback of the surface field does not occur, no such correlation materializes. For more on these
matters see Charbonneau and Barlet (2010).

It is particularly instructive to compare and contrast the forecast schemes (and cycle 24 pre-
dictions) of Dikpati et al. 2006 (see also Dikpati and Gilman, 2006) and Choudhuri et al. 2007
(see also Jiang et al., 2007). Both groups use a dynamo model of the Babcock–Leighton variety
(Section 4.8), in conjunction with input of solar magnetic field observations in a manner often (and
incorrectly) described as “data assimilation”. The model parameters are adjusted to reproduce
the known amplitudes of previous sunspot cycles, and the model is then integrated forward in time
beyond this calibration interval to provide a forecast.

Table 1 details the various modelling components associated with each forecasting scheme. Both
are remarkably similar, differing at the level of what one would usually consider modelling details,
and do about as well at reproducing amplitude of past cycles over their respective calibration
intervals. Yet, they end up producing cycle 24 amplitude forecasts that stand at opposite ends of
the very wide range of cycle 24 forecasts produced by other techniques. A cycle 24 with SSN = 80
would place it amongst the weakest of the past century (cycles 14 and 16), while SSN = 180 would
rank it on par with the two highest cycle amplitude on record (cycles 4 and 19; see Figure 22).

Much criticism has been leveled at these dynamo model-based cycle forecasting schemes, and
sometimes unfairly so. To dismiss the whole idea on the grounds that the solar dynamo is a chaotic
system is likely too extreme a stance, especially since (1) even chaotic systems can be amenable
to prediction over a finite temporal window, and (2) input of data (even if not via true data
assimilation) can in principle lead to some correction of the system’s trajectory in phase space.
More relevant (in my opinion) has been the explicit demonstration that (1) very small changes in

Living Reviews in Solar Physics
http://www.livingreviews.org/lrsp-2010-3

http://www.livingreviews.org/lrsp-2010-3


Dynamo Models of the Solar Cycle 69

Table 1: Two dynamo-based solar cycle forecasting schemes

Authors /Ref. Dikpati et al. (2006) Choudhuri et al. (2007)

Dynamo model kinematic axisymmetric kinematic axisymmetric
Babcock–Leighton Babcock–Leighton

Core-CZ interface 𝑟/𝑅 = 0.7 𝑟/𝑅 = 0.7

Magnetic diffusivity Eq. (17), Δ𝜂 = 300 Eq. (17), Δ𝜂 = 104

plus high-𝜂 surface layer

Differential rotation solar-like parameterization solar-like parameterization
Eqs. (15) – (16), 𝑤/𝑅 = 0.05 Eqs. (15) – (16), 𝑤/𝑅 = 0.015
all other parameters same all other parameters same

Meridional circulation single cell per quadrant single cell per quadrant
closing at 𝑟/𝑅 = 0.71 closing at 𝑟/𝑅 = 0.635

Poloidal source term data-driven surface forcing subsurface 𝛼-effect
plus weak tachocline 𝛼-effect plus buoyancy algorithm

Nonlinearity algebraic 𝛼-quenching algebraic 𝛼-quenching
only in tachocline 𝛼-effect in subsurface 𝛼-effect

Solar data time series of total sunspot area DM Index
used to (continuously) drive used to reset amplitude of 𝐴
parametric surface forcing of 𝐴 at “solar minimum”

Calibration interval Cycles 16 – 23 Cycles 21 – 23

Cycle 24 forecast SSN = 155 – 180 SSN = 80

some unobservable and poorly constrained input parameters to the dynamo model used for the
forecast can introduce significant errors already for next-cycle amplitude forecasts (see Bushby and
Tobias, 2007, also Yeates et al., 2008); (2) the exact manner in which surface data drives the model
can have a huge impact on the forecasting skill (Cameron and Schüssler, 2007). Consequently, the
discrepant forecasts of Table 1 indicate mostly that current dynamo model-based predictive schemes
still lack robustness. True data assimilation has been carried out using highly simplified dynamo
models (Kitiashvili and Kosovichev, 2008), and clearly this must be carried over to more realistic
dynamo models.

Finally, one must also keep in mind that other plausible explanations exist for the relatively
good precursor potential of the solar surface magnetic field. In particular, Cameron and Schüssler
(2008) have argued that the well-known spatiotemporal overlap of cycles in the butterfly diagram
(see Figure 3), taken in conjunction with the empirical anticorrelation between cycle amplitude and
rise time embodied in the Waldmeier Rule (Figure 22D; also Hathaway, 2010, Section 4.6), could
in itself explain the precursor performance of the polar field strength at solar activity minimum.
Given the unusually extended minimum phase between cycles 23 and 24, it will be very interesting
to revisit all these model results once cycle 24 reaches its peak amplitude.
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6 Open Questions and Current Trends

I close this review with the following discussion of a few open questions that, in my opinion, bear
particularly heavily on our understanding (or lack thereof) of the solar cycle.

6.1 What is the primary poloidal field regeneration mechanism?

Given the amount of effort having gone into building detailed dynamo models of the solar cycle, it is
quite sobering to reflect upon the fact that the physical mechanism responsible for the regeneration
of the poloidal component of the solar magnetic field has not yet been identified with confidence.
As discussed at some length in Section 4, current models relying on distinct mechanisms all have
their strengths and weaknesses, in terms of physical underpinning as well as comparison with
observations.

Something akin to the 𝛼-effect of mean-field electrodynamics has been measured in a number
of local and global numerical simulations including rotation and stratification, so this certainly
remains a favored magnetic field generation mechanism. Modelling of the evolution of the Sun’s
surface magnetic flux has abundantly confirmed that the Babcock–Leighton mechanism is operating
on the Sun, in the sense that magnetic flux liberated by the decay of tilted bipolar active regions
does accumulate in the polar regions, where it triggers polarity reversal of the poloidal component
(see Wang and Sheeley Jr, 1991; Schrijver et al., 2002; Wang et al., 2002; Baumann et al., 2004,
and references therein). The key question is whether this is an active component of the dynamo
cycle, or a mere side-effect of active region decay. Likewise, the buoyant instability of magnetic
flux tubes (Section 4.7) is, in some sense, unavoidable; here again the question is whether or not
the associated azimuthal mean electromotive force contributes significantly to dynamo action in
the Sun.

6.2 What limits the amplitude of the solar magnetic field?

The amplitude of the dynamo-generated magnetic field is almost certainly restricted by the back-
reaction of Lorentz forces on the driving fluid motions. However, as outlined in Section 5.3.1, this
backreaction can occur in many ways.

Helioseismology has revealed only small variations of the differential rotation profile in the
course of the solar cycle. The observed variations amount primarily to an extension in depth of
the pattern of low-amplitude torsional oscillations long known from surface Doppler measurements
(but see also Basu and Antia, 2001; Toomre et al., 2003; Howe, 2009). Taken at face value,
these results suggest that quenching of differential rotation is not the primary amplitude-limiting
mechanism, unless the dynamo is operating very close to criticality. Once again the hope is that
in the not-too-distant future, helioseismology will have mapped accurately enough cycle-induced
variations of differential rotation in the convective envelope and tachocline, to settle this issue.

Algebraic quenching of the 𝛼-effect (or 𝛼-effect-like source terms) is the mechanism most often
incorporated in dynamo models. However, this state of affairs usually has much more to do with
computational convenience than commitment to a specific physical quenching mechanism. There
is little doubt that the 𝛼-effect will be affected once the mean magnetic field reaches equipartition;
the critical question is whether it becomes quenched long before that, for example by the small-
scale component of the magnetic field. The issue hinges on helicity conservation and flux through
boundaries, and subtleties of flow-field interaction in MHD turbulence. For recent entry points
into this very active area of current research, see Cattaneo and Hughes (1996), Blackman and Field
(2000), Brandenburg and Dobler (2001), and Brandenburg (2009).

Flux loss through magnetic buoyancy is the primary reason why most contemporary dynamo
models of the solar cycle rely on the rotational shear in the tachocline to achieve toroidal field
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amplification. If the dynamo were to reside entirely in the convective envelope, then this would be
an important, perhaps even dominant, amplitude limiting mechanism (see Schmitt and Schüssler,
1989; Moss et al., 1990). If, on the other hand, toroidal field amplification takes place primarily at
or beneath the core-envelope interface, then it is less clear whether or not this mechanism plays a
dominant role. In fact, it may even be that rising flux ropes amplify the deep-seated magnetic field,
as nicely demonstrated by the numerical calculations of Rempel and Schüssler (2001). Magnetic
flux loss through buoyancy can also have a large impact on the cycle period (see, e.g. Kitchati-
nov et al., 2000), and the model calculations of Lopes and Passos (2009) indicate that combined
with fluctuations in the meridional flow speed, very solar-like cycle amplitude variations can be
produced. The impact of this amplitude limiting mechanism clearly requires further investigation.

6.3 Flux tubes versus diffuse fields

The foregoing discussion has implicitly assumed that the dynamo process produces a mean, large-
scale magnetic field that then concentrates itself into the flux ropes that subsequently give rise to
sunspots. High-resolution observations of the photospheric magnetic field show that even outside
of sunspots, the field is concentrated in flux tubes (see, e.g., Parker, 1982, and references therein),
presumably as a consequence of convective collapse of magnetic flux concentrations too weak to
block convection and form sunspots. In this picture, which is basically the framework of all dynamo
models discussed above, the mean magnetic field is the dominant player in the cycle.

An alternate viewpoint is to assume that the solar magnetic field is a fibril state from beginning
to end, throughout the convection zone and tachocline, and that whatever large-scale field there
may be in the photosphere is a mere by-product of the decay of sunspots and other flux tube-like
small-scale magnetic structures. The challenge is then to devise a dynamo process that operates
entirely on flux tubes, rather than on a diffuse mean field. Some exploratory calculations have
been made (e.g., DeLuca et al., 1993; Schatten, 2009), but this intriguing question has received far
less attention than it deserves.

6.4 How constraining is the sunspot butterfly diagram?

The shape of the sunspot butterfly diagram (see Figure 3) continues to play a dominant constraining
role in many dynamo models of the solar cycle. Yet caution is in order on this front. Calculations
of the stability of toroidal flux ropes stored in the overshoot region immediately beneath the core-
envelope interface indicate that instability is much harder to produce at high latitudes, primarily
because of the stabilizing effect of the magnetic tension force; thus strong fields at high latitudes
may well be there, but not produce sunspots. Likewise, the process of flux rope formation from
the dynamo-generated mean magnetic field is currently not understood. Are flux ropes forming
preferentially in regions of most intense magnetic fields, in regions of strongest magnetic helicity,
or in regions of strongest hydrodynamical shear? Is a stronger diffuse toroidal field forming more
strongly magnetized flux ropes, or a larger number of flux ropes always of the same strength?

These are all crucial questions from the point of view of comparing results from dynamo models
to sunspot data. Until they have been answered, uncertainty remains as to the degree to which the
sunspot butterfly diagram can be compared in all details to time-latitude diagrams of the toroidal
field, as produced by this or that dynamo model.

6.5 Is meridional circulation crucial?

The main question regarding meridional circulation is not whether it is there or not, but rather
what role it plays in the solar cycle. The answer hinges on the value of the turbulent diffusivity
𝜂T, which is notoriously difficult to estimate with confidence. It is probably essential in mean-field
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and mean-field-like dynamo models characterized by positive 𝛼-effects in the Northern hemisphere,
in order to ensure equatorward transport of the sunspot-forming, deep-seated toroidal magnetic
field (see Sections 4.4, 4.5, and 4.7), unless the latitudinal turbulent pumping speeds turn out
significantly larger than currently estimated (Käpylä et al., 2006a). It also appears to be a major
determinant in the evolution of the surface magnetic field in the course of the solar cycle. Something
like it is certainly needed in dynamo models based on the Babcock–Leighton mechanism, to carry
the poloidal field generated at the surface down to the tachocline, where production of the toroidal
field is taking place (see Section 4.8).

The primary unknown at this writing is the degree to which meridional circulation is affected
by the Lorentz force associated with the dynamo-generated magnetic field. Recent calculations
(Rempel, 2006a,b) suggest that the backreaction is limited to regions of strongest toroidal fields,
so that the “conveyor belt” is still operating in the bulk of the convective envelope, but this issue
requires further study. Another important related issue is the advective role of turbulent pumping,
which may well compete and/or complement the advective effect of the meridional flow.

6.6 Is the mean solar magnetic field really axisymmetric?

While the large-scale solar magnetic field is axisymmetric about the Sun’s rotation axis to a
good first approximation, various lines of observational evidence point to a persistent, low-level
non-axisymmetric component; such evidence includes the so-called active longitudes (see Henney
and Harvey, 2002, and references therein), rotationally-based periodicity in cycle-related eruptive
phenomena (Bai, 1987), and the shape of the white-light corona in the descending phase of the
cycle.

Various mean-field-based dynamo models are known to support non-axisymmetric modes over
a substantial portion of their parameter space (see, e.g., Moss et al., 1991; Moss, 1999; Bigazzi
and Ruzmaikin, 2004, and references therein). At high Rm, strong differential rotation (in the
sense that 𝐶Ω ≫ 𝐶𝛼) is known to favor axisymmetric modes, because it efficiently destroys any

non-axisymmetric component on a timescale much faster than diffusive (∝ Rm1/3 at high Rm,
instead of ∝ Rm). Although it is not entirely clear that the Sun’s differential rotation is strong
enough to place it in this regime (see, e.g., Rüdiger and Elstner, 1994), some 3D models do show
this symmetrizing effect of differential rotation (see, e.g., Zhang et al., 2003a). Likewise, the recent
numerical 3D MHD simulations of solar-like cycles by Ghizaru et al. (2010) do produce a large-scale
magnetic field with a dominant axisymmetric component. These types of simulations will probably
offer the best handle on this question.

6.7 What causes Maunder-type Grand Minima?

The origin of Grand Minima in solar activity also remains a question subjected to intense scrutiny.
Broadly speaking, Grand Minima can occur either through amplitude modulation of a basic un-
derlying dynamo cycle, or through intermittency. In this latter case, the transition from one state
to another can take place via the system’s internal dynamics, or through the influence of external
stochastic noise, or both. Not surprisingly, a large number of plausible Grand Minima models can
now be found in the extant literature (cf. Section 5.6).

Historical researches have shown that the Sun climbed out of the Maunder Minimum gradually,
and showing strongly asymmetric activity, with nearly all sunspots observed between 1670 and
1715 located in the Southern solar hemisphere (see Ribes and Nesme-Ribes, 1993). Some historical
reconstructions of the butterfly diagram in the pre-photographic era also suggest the presence
of what could be interpreted as a quadrupolar component (Arlt, 2009). These are the kind of
pattern that can be readily produced by nonlinear parity modulation (cf. Figure 23 herein; see
also Beer et al., 1998; Sokoloff and Nesme-Ribes, 1994; Usoskin et al., 2009b). Then again, in
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the context of an intermittency-based model, it is quite conceivable that one hemisphere can pull
out of a quiescent epoch before the other, thus yielding sunspot distributions compatible with the
aforecited observations in the late Maunder Minimum. Such scenarios, relying on cross-hemispheric
coupling, have hardly begun to be explored (Charbonneau, 2005, 2007a; Chatterjee and Choudhuri,
2006).

Another possible avenue for distinguishing between these various scenarios is the persistence of
the primary cycle’s phase through Grand Minima. Generally speaking, models relying on amplitude
modulation can be expected to exhibit good phase persistence across such minima, because the
same basic cycle is operating at all times (cf. Figure 23). Intermittency, on the other hand, should
not necessarily lead to phase persistence, since the active and quiescent phases are governed by
distinct dynamics. One can but hope that careful analysis of cosmogenic radioisotope data may
soon indicate the degree to which the solar cycle’s phase persisted through the Maunder, Spörer,
and Wolf Grand Minima, in order to narrow down the range of possibilities.

6.8 Where do we go from here?

Recent years have witnessed a number of significant advances in solar cycle modelling. Local mag-
netohydrodynamical simulations of thermally-driven convection have now allowed measurements
of the 𝛼-tensor, and of its variation with depth and latitude in the solar interior, and with rota-
tion rate; and global magnetohydrodynamical simulation of solar convection are now producing
large-scale magnetic fields, in some cases even undergoing polarity reversals on decadal timescales.
Such simulations are ideally suited for investigating a number of important issues, such as the
mechanism(s) responsible for regulating the amplitude of the solar cycle, the magnetically-driven
temporal variations of the large-scale flows important for the solar cycle, and the possible impact
of a cycling large-scale magnetic field on convective energy transport, to mention but a few.

Despites continuing advances in computing power, global MHD simulations remain extremely
demanding, and proper capture of important solar cycle elements —most notably the forma-
tion, emergence and surface decay sunspots and active regions— are certainly not forthcoming.
Nonetheless, comparison between cyclic solutions arising in full numerical simulations and those
characterizing simpler mean-field-like models should also allow to test the validity limit of the kine-
matic approximation and of the simple algebraic amplitude-limiting nonlinearities still so prevalent
in the latter class of solar cycle models. It appears likely that in the foreseeable future, the simpler,
mean-field and mean-field-like solar cycle models reviewed here will remain the workhorses of re-
search on long timescale phenomena such as grand activity minima and maxima, on the evolution
of surface magnetic flux, on dynamo-model-based solar cycle prediction, and on the modelling and
interpretation of stellar activity cycles.
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Kitchatinov, L.L. and Rüdiger, G., 2006, “Magnetic field confinement by meridional flow and the
solar tachocline”, Astron. Astrophys., 453, 329–333. [DOI], [ADS], [astro-ph/0603417] (Cited on
page 53.)
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Rädler, K.-H., Kleeorin, N. and Rogachevskii, I., 2003, “The Mean Electromotive Force for MHD
Turbulence: The Case of a Weak Mean Magnetic Field and Slow Rotation”, Geophys. Astrophys.
Fluid Dyn., 97, 249–274. [DOI], [ADS], [astro-ph/0209287] (Cited on page 17.)

Rempel, M., 2005, “Influence of Random Fluctuations in the Λ-Effect on Meridional Flow and
Differential Rotation”, Astrophys. J., 631, 1286–1292. [DOI], [ADS], [astro-ph/0610132] (Cited
on page 37.)

Rempel, M., 2006a, “Transport of Toroidal Magnetic Field by the Meridional Flow at the Base
of the Solar Convection Zone”, Astrophys. J., 637, 1135–1142. [DOI], [ADS], [astro-ph/0610133]
(Cited on pages 37 and 72.)

Rempel, M., 2006b, “Flux-Transport Dynamos with Lorentz Force Feedback on Differential Ro-
tation and Meridional Flow: Saturation Mechanism and Torsional Oscillations”, Astrophys. J.,
647, 662–675. [DOI], [ADS], [astro-ph/0604446] (Cited on pages 37, 55, and 72.)

Rempel, M. and Schüssler, M., 2001, “Intensification of magnetic fields by conversion of potential
energy”, Astrophys. J. Lett., 552, L171–L174. [DOI], [ADS] (Cited on page 71.)

Ribes, J.C. and Nesme-Ribes, E., 1993, “The solar sunspot cycle in the Maunder minimum AD1645
to AD1715”, Astron. Astrophys., 276, 549–563. [ADS] (Cited on pages 51, 64, and 72.)

Roald, C.B. and Thomas, J.H., 1997, “Simple solar dynamo models with variable 𝛼 and 𝜔 effects”,
Mon. Not. R. Astron. Soc., 288, 551–564. [ADS] (Cited on page 57.)

Roberts, P.H. and Stix, M., 1972, “𝛼-Effect Dynamos, by the Bullard-Gellman Formalism”, Astron.
Astrophys., 18, 453. [ADS] (Cited on page 32.)

Rozelot, J.P., 1995, “On the chaotic behaviour of the solar activity”, Astron. Astrophys., 297,
L45–L48. [ADS] (Cited on page 53.)
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