ASTR 7500: Solar \& Stellar Magnetism
Hale CGEP Solar \& Space Physics

Profs. Brad Hindman \& Juri Toomre Lecture 25 Tues 23 Apr 2013

Lecture 25

MHD Waves

- Scattering and Absorption of Waves by Sunspots
- MHD Waves in a Homogeneous Atmosphere Linearization Alfvén Speed Deriving a matrix equation
- MHD Wave Modes

Three wave modes (Alfvén, Fast Magnetosonic, Slow Magnetosonic)
Dispersion Relations
Polarization

- Shear Alfvén Wave

Properties of the Shear Alfvén Wave

- Fast and Slow Magnetosonic Waves

Pressure and magnetic forces
Why is the fast mode fast and the slow mode slow?

Scattering Measurements in Cylindrical Coordinates

Transform the observed Dopplergrams into polar coordinates centered on sunspot (and in quiet sun as a control).

$$
v_{l o s}(\vec{x}, t)=v_{l o s}(r, \varphi, t)
$$

Fourier-Hankel Decomposition

Decompose into cylindrical waves

$$
\begin{aligned}
& \text { Hankel Functions } \\
& H_{m}^{(1,2)}(x) \equiv J_{m}(x) \pm i Y_{m}(x)
\end{aligned}
$$

Absorption

$v_{l o s}(r, \varphi, t)=\int \sum_{m} \sum_{n}\left[A_{m n}(\omega) H_{m}^{(1)}\left(k_{n} r\right)+B_{m}(\omega) H_{m}^{(2)}\left(k_{l} r\right)\right] e^{i m \varphi} e^{-i \omega t} d \omega$
If $\left|A_{m n}(\omega)\right| \neq\left|B_{m n}(\omega)\right|$ the sunspot is either:

- redistributing the energy between modes (i.e., inward p_{1} is scattered into outward p_{2} or f)
- Destroying the acoustic wave energy

These processes are generically called absorption and can be observationally characterized by an absorption coefficient

$$
\alpha_{m n}(\omega) \equiv \frac{\left|A_{m n}(\omega)\right|^{2}-\left|B_{m n}(\omega)\right|^{2}}{\left|A_{m n}(\omega)\right|^{2}}
$$

MHD Waves in a Homogeneous Atmosphere

MHD Waves

We start from the MHD equations expressing the conservation of mass, momentum and energy. We ignore viscosity, gravity, thermal conduction and other nonadiabatic processes.

Continuity Equation

Linearize About a

 Homogeneous BackgroundLet the background fluid be stationary and homogeneous, with constant density ρ_{0} and pressure P_{0} as a function of position. Further, consider a constant background magnetic field of strength B that points in the direction.

Linearized MHD Equations

Since the atmosphere is homogeneous (without gravitational stratification) and the background magnetic field is constant, the linearized form of the MHD equations is relatively simple

$$
\begin{array}{l|l}
\text { Continuity Equation } & \frac{\partial \rho_{1}}{\partial t}=-\rho_{0} \vec{\nabla} \cdot \vec{v} \\
\text { Momentum Equation } \\
\text { Energy Equation } & \rho_{0} \frac{\partial \vec{v}}{\partial t}=-\vec{\nabla} P_{1}+\frac{\left(\vec{\nabla} \times \vec{B}_{1}\right) \times \vec{B}_{0}}{4 \pi} \\
\frac{\partial P_{1}}{\partial t}=c_{\mathrm{s}}^{2} \frac{\partial \rho_{1}}{\partial t} \\
\text { Induction Equation } & \frac{\partial \vec{B}_{1}}{\partial t}=\vec{\nabla} \times\left(\vec{v} \times \vec{B}_{0}\right)
\end{array}
$$

Plane Waves

Since the atmosphere is homogeneous, all of the coefficients in the previous set of PDEs are constants. Thus, we should seek plane-wave solutions,

$$
\begin{aligned}
& \rho_{1}(\vec{x}, t)=\tilde{\rho}_{1} \exp (i \vec{k} \cdot \vec{x}-i \omega t) \\
& P_{1}(\vec{x}, t)=\tilde{P}_{1} \exp (i \vec{k} \cdot \vec{x}-i \omega t) \\
& \vec{v}(\vec{x}, t)=\overrightarrow{\tilde{v}}^{\operatorname{vexp}}(i \vec{k} \cdot \vec{x}-i \omega t) \\
& \vec{B}_{1}(\vec{x}, t)=\overrightarrow{\vec{B}}_{1} \exp (i \vec{k} \cdot \vec{x}-i \omega t)
\end{aligned}
$$

$\omega=$ Frequency
$\vec{k}=$ Wavenumber

For simplicity, I will drop all of the tildes from here on forward.

Fourier Transformed Equations

Insert the plane-wave functional form (or Fourier Transform the equations) to find the following
$\frac{\partial \rho_{1}}{\partial t}=-\rho_{0} \vec{\nabla} \cdot \vec{v} \quad \begin{aligned} & \text { Continuity } \\ & -i \omega \rho_{1}=-i \rho_{0} \vec{k} \cdot \vec{v}\end{aligned}$

$$
\begin{align*}
& \rho_{0} \frac{\partial \vec{v}}{\partial t}=-\vec{\nabla} P_{1}+\frac{\left(\vec{\nabla} \times \vec{B}_{1}\right) \times \vec{B}_{0}}{4 \pi} \longrightarrow \begin{array}{l}
\text { Momentum } \\
-i \omega \rho_{0} \vec{v}=-i \vec{k} P_{1}+\frac{\left(i \vec{k} \times \vec{B}_{1}\right) \times \vec{B}_{0}}{4 \pi} \\
\begin{array}{l}
\text { Enerog } \\
\frac{\partial P_{1}}{\partial t}=c_{s}^{2} \frac{\partial \rho_{1}}{\partial t} \\
-i \omega P_{1}=-i \omega \omega_{s}^{2} \rho_{1} \\
\text { Induction } \\
\frac{\text { In }}{\partial t}
\end{array}=\vec{\nabla} \times\left(\vec{v} \times \vec{B}_{0}\right) \Longrightarrow \\
-i \omega \vec{B}_{1}=i \vec{k} \times\left(\vec{v} \times \vec{B}_{0}\right)
\end{array}
\end{align*}
$$

Reduce to a Single Equation

Our goal is to eliminate every variable except the velocity.
We can eliminate the pressure perturbation in favor of the density perturbation through the energy equation
$-i \omega P_{1}=-i \omega c_{\mathrm{s}}^{2} \rho_{1}$
$\longrightarrow \quad P_{1}=c_{\mathrm{s}}^{2} \rho_{1}$

We can eliminate the density perturbation through the use of the continuity equation
$-i \omega \rho_{1}=-i \rho_{0} \vec{k} \cdot \vec{v} \quad \rho_{1}=\frac{\rho_{0}}{\omega} \vec{k} \cdot \vec{v}$
The induction equation can be used to eliminate the perturbed magnetic field
$-i \omega \vec{B}_{1}=i \vec{k} \times\left(\vec{v} \times \vec{B}_{0}\right) \quad \vec{B}_{1}=-\frac{\vec{k}}{\omega} \times\left(\vec{v} \times \vec{B}_{0}\right)$

Hannes Alfvén (1908-1995)

Alfvén was a Swedish electrical engineer and plasma physicist.

Aurorae

Van Allen Radiation Belts
Magnetic storms of Earth's magnetic field
Galactic plasma dynamics
Magnetohydrodynamics
(Nobel Prize 1970)

Simplify

$\left[\omega^{2}-\left(\vec{k} \cdot \vec{V}_{A}\right)^{2}\right] \vec{v}=\left[\left(c_{s}^{2}+V_{A}^{2}\right)(\vec{k} \cdot \vec{v})-\left(\vec{k} \cdot \vec{V}_{A}\right)\left(\vec{V}_{A} \cdot \vec{v}\right)\right] \vec{k}-\left(\vec{k} \cdot \vec{V}_{A}\right)(\vec{k} \cdot \vec{v}) \vec{V}_{A}$
Remember that the background magnetic field points in the z direction.

$$
\left.\begin{array}{l}
\vec{B}_{0}=B_{0} \hat{z} \\
\vec{V}_{\mathrm{A}}=V_{\mathrm{A}} \hat{z}
\end{array}\right\}\left\{\begin{array}{l}
\vec{k} \cdot \vec{V}_{\mathrm{A}}=k_{z} V_{\mathrm{A}} \\
\overrightarrow{V_{\mathrm{A}}} \cdot \vec{v}=V_{\mathrm{A}} v_{z}
\end{array}\right.
$$

$\left(\omega^{2}-k_{z}^{2} V_{\mathrm{A}}^{2}\right) \vec{v}=\left[\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right)(\vec{k} \cdot \vec{v})-k_{z} V_{\mathrm{A}}^{2} v_{z}\right] \vec{k}-k_{z} V_{\mathrm{A}}^{2}(\vec{k} \cdot \vec{v}) \hat{z}$

Horizontal Isotropy

We can further simplify be noting that x and y are interchangeable Therefore, without loss of generality we may assume $k_{y}=0$.

Eigenproblem

$$
\mathbb{A} \vec{v}=-\omega^{2} \vec{v}
$$

This is an eigenvalue-eigenvector problem.

- Since the matrix is 3×3, there are three eigenvalues and three eigenvectors. Each corresponds to a separate wave mode
-The three eigenvalues ω^{2} provide the dispersion relations.
-The eigenvectors provide the polarizations.
-The eigenvectors are orthogonal, and any disturbance can be expressed as a linear combination of the three wave modes.

Dispersion Relations - Eigenvalues

$$
\mathbb{A} \vec{v}=-\omega^{2} \vec{v} \longrightarrow\left(\mathbb{A}+\omega^{2} \mathbb{I}\right) \vec{v}=0
$$

If this matrix equation is to have a solution, the determinant of the matrix must vanish.

$$
\operatorname{det}\left(\mathbb{A}+\omega^{2} \mathbb{I}\right)=0
$$

After only marginal algebra we obtain the dispersion relation

$$
\left(\omega^{2}-k_{z}^{2} V_{\mathrm{A}}^{2}\right)\left[\omega^{4}-k^{2}\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right) \omega^{2}+k^{2} k_{z}^{2} c_{\mathrm{s}}^{2} V_{\mathrm{A}}^{2}\right]=0
$$

Three Wave Modes

$$
\left(\omega^{2}-k_{z}^{2} V_{\mathrm{A}}^{2}\right)\left[\omega^{4}-k^{2}\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right) \omega^{2}+k^{2} k_{z}^{2} c_{\mathrm{s}}^{2} V_{\mathrm{A}}^{2}\right]=0
$$

This equation is cubic in ω^{2}. Thus, there are three unique solutions for ω^{2}, and correspondingly three unique wave modes.

One solution satisfies

$$
\omega^{2}-k_{z}^{2} V_{\mathrm{A}}^{2}=0
$$

Shear Alfvén
Wave
Two solutions satisfy

$$
\begin{aligned}
& \omega^{4}-k^{2}\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right) \omega^{2}+k^{2} k_{z}^{2} c_{\mathrm{s}}^{2} V_{\mathrm{A}}^{2}=0 \quad \begin{array}{l}
\text { Fast and Slow } \\
\begin{array}{l}
\text { Magnetosonic } \\
\text { Waves }
\end{array} \\
\omega^{2}=\frac{k^{2}}{2}\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right) \pm \frac{k^{2}}{2} \sqrt{\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right)^{2}-4 \frac{k_{z}^{2}}{k^{2}} c_{\mathrm{s}}^{2} V_{\mathrm{A}}^{2}}
\end{array} .
\end{aligned}
$$

Polarizations - Eigenvectors

$$
\left(\mathbb{A}+\omega^{2} \mathbb{I}\right) \vec{v}=\left[\begin{array}{ccc}
\omega^{2}-k_{z}^{2} V_{A}^{2}-k_{x}^{2}\left(c_{\mathrm{s}}^{2}+V_{A}^{2}\right) & 0 & -k_{x} k_{z} c_{\mathrm{s}}^{2} \\
0 & \omega^{2}-k_{k_{s}^{2}}^{2} V_{A}^{2} & 0 \\
-k_{x} k_{z}^{2} c_{\mathrm{s}}^{2} & 0 & \omega^{2}-k_{z}^{2} c_{\mathrm{s}}^{2}
\end{array}\right] \vec{v}=0
$$

The three eigenvectors give the solution for the velocity for each wave mode.

The Shear Alfvén wave is polarized in the y direction

$$
\vec{v}=\hat{y}
$$

The magnetosonic waves have polarization in the $x-z$ plane.

$$
\vec{v}=\left(\omega_{\mathrm{f}, \mathrm{~s}}^{2}-k_{z}^{2} c_{\mathrm{s}}^{2}\right) \hat{x}+k_{x} k_{z} c_{\mathrm{s}}^{2} \hat{z}
$$

Orthogonality of Wave Polarizations

$\mathbb{A} \vec{v}=-\omega^{2} \vec{v} \quad \vec{v}_{\mathrm{f}, \mathrm{S}}=\left(\omega_{\mathrm{f}, \mathrm{S}}^{2}-k_{z}^{2} c_{\mathrm{s}}^{2}\right) \hat{x}+k_{x} k_{z} c_{\mathrm{s}}^{2} \hat{z}$

$$
\vec{v}_{\mathrm{A}}=\hat{y}
$$

The Alfvén wave and the magnetosonic waves have velocities that are all mutually orthogonal. This is a consequence of the velocities being eigenvectors

$$
\left(\vec{v}_{\mathrm{A}} \cdot \vec{v}_{\mathrm{f}}\right)=\left(\vec{v}_{\mathrm{A}} \cdot \vec{v}_{\mathrm{s}}\right)=\left(\vec{v}_{\mathrm{f}} \cdot \vec{v}_{\mathrm{s}}\right)=0
$$

Shear Alfvén Wave

Since the three polarizations are mutually orthogonal, one can construct any disturbance as a linear superposition of Alfvén waves fast magnetosonic waves, and slow magnetosonic waves.

$$
\vec{v}=A_{\mathrm{A}} \vec{v}_{\mathrm{A}}+A_{\mathrm{f}} \vec{v}_{\mathrm{f}}+A_{\mathrm{s}} \vec{v}_{\mathrm{s}}
$$

Shear Alfvén Wave

The Shear Alfvén wave satisfies the dispersion relation

$$
\omega^{2}-k_{z}^{2} V_{\mathrm{A}}^{2}=0
$$

The polarization of the eigenvector is purely in the y direction, perpendicular to both the magnetic field and the wavevector.

$$
\vec{v}=U_{\mathrm{A}} \hat{y}
$$

The wave is incompressive.

$$
\begin{gathered}
\vec{\nabla} \cdot \vec{v}=i \vec{k} \cdot \vec{v}=k_{y} v_{y}=0 \\
\rho_{1}=0 \\
P_{1}=0
\end{gathered}
$$

Alfvén Waves are Transverse

The perturbed magnetic field is also purely in the y direction. This can be shown using the induction equation.

$$
\begin{array}{l|}
\vec{B}_{1}=-\frac{\vec{k}}{\omega} \times\left(\vec{v} \times \vec{B}_{0}\right) \\
\vec{v}=U_{\mathrm{A}} \hat{y} \\
\\
\vec{B}_{1}(\vec{x}, t)=-\frac{k_{z} B_{0}}{\omega} U_{\mathrm{A}} \hat{y} \\
\vec{k}=k_{x} \hat{x}+k_{z} \hat{z} \\
\hline \vec{B}_{0}=B_{0} \hat{z} \\
\vec{v}=v \hat{y} \\
\otimes \vec{B}_{1}=B_{1} \hat{y}
\end{array}
$$

Alfvén Waves are Tension Waves

Since Alfvén waves are incompressive, they lack perturbations to the magnetic pressure and the gas pressure. Thus, the restoring force must be magnetic tension.
$-i \omega \rho_{0} \vec{v}=-i \vec{k} p_{1}+\frac{\left(i \vec{k} \times \vec{B}_{1}\right) \times \vec{B}_{0}}{4 \pi}$
Magnetic Pressure
$-\vec{\nabla} \frac{B^{2}}{8 \pi}=-\vec{k} \frac{\vec{B}_{0} \cdot \vec{B}_{1}}{4 \pi}=0$
The tension force
$\frac{(\vec{B} \cdot \vec{\nabla}) \vec{B}}{4 \pi}=\frac{\left(\vec{B}_{0} \cdot i \vec{k}\right) \vec{B}_{1}}{4 \pi}=i k_{z} \frac{B_{0} B_{1}}{4 \pi}$

Alfvén Waves Travel along
 Field Lines

$\omega^{2}-k_{z}^{2} V_{\mathrm{A}}^{2}=0$
The dispersion relation is only a function of k_{z}. Thus, the group velocity is parallel to the magnetic field.

$$
\omega=k_{z} V_{\mathrm{A}}
$$

$$
\vec{v}_{\text {group }}=\vec{\nabla}_{k} \omega=V_{\mathrm{A}} \hat{z}
$$

Thus energy flows along the field lines and the waves propagate along the field. This property even holds in background configurations with curved field lines.

Magnetosonic Waves

The two magnetosonic waves satisfy the dispersion relation

$$
\begin{aligned}
& \omega^{4}-k^{2}\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right) \omega^{2}+k^{2} k_{z}^{2} c_{\mathrm{s}}^{2} V_{\mathrm{A}}^{2}=0 \\
& \text { Quadratic equation in } \omega^{2} \\
& \omega^{2}=\frac{k^{2}}{2}\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right) \pm \frac{k^{2}}{2} \sqrt{\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right)^{2}-4 \frac{k_{z}^{2}}{k^{2}} c_{\mathrm{s}}^{2} V_{\mathrm{A}}^{2}}
\end{aligned}
$$

The phase speed is obtained by dividing by the wave number.

$$
v_{\text {phase }}^{2}=\left(\frac{\omega}{k}\right)^{2}=\frac{1}{2}\left\{\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right) \pm \sqrt{\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right)^{2}-4 \frac{k_{z}^{2}}{k^{2}} c_{\mathrm{s}}^{2} V_{\mathrm{A}}^{2}}\right\}
$$

Fast and Slow Modes

$$
v_{\text {phase }}^{2}=\frac{1}{2}\left\{\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right) \pm \sqrt{\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right)^{2}-4 \frac{k_{z}^{2}}{k^{2}} c_{\mathrm{s}}^{2} V_{\mathrm{A}}^{2}}\right\}
$$

Magnetosonic Modes
$+\operatorname{sign} \rightarrow$ Fast mode Faster than both c_{s} or V_{A}.

- sign \rightarrow Slow mode Slower than either c_{s} or V_{A}.

The detailed behavior depends on the ratio of c_{s} and V_{A}. Traditionally, this is expressed through the plasma parameter β, which is defined as the ratio of the gas pressure to magnetic pressure.

$$
\beta \equiv \frac{P}{B^{2} / 8 \pi}=\frac{2}{\gamma} \frac{c_{\mathrm{s}}^{2}}{V_{\mathrm{A}}^{2}} \quad \begin{array}{ll}
\beta \ll 1 & \text { Strong field limit } \\
& \beta \gg 1
\end{array} \text { Weak field limit }
$$

Phase Speed Diagrams

$$
v_{\text {phase }}^{2}=\frac{1}{2}\left\{\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right) \pm \sqrt{\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right)^{2}-4 \frac{k_{z}^{2}}{k^{2}} c_{\mathrm{s}}^{2} V_{\mathrm{A}}^{2}}\right\}
$$

The sound speed and the Alfvén speed appear symmetrically

Slow and Fast Speeds

$v_{\text {phase }}^{2}=\frac{1}{2}\left\{\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right) \pm \sqrt{\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right)^{2}-4 \frac{k_{z}^{2}}{k^{2}} c_{\mathrm{s}}^{2} V_{\mathrm{A}}^{2}}\right\}$
This equation can be expressed in a useful form using the slow and fast speeds

$$
c_{\mathrm{T}}^{-2} \equiv c_{\mathrm{s}}^{-2}+V_{\mathrm{A}}^{-2}\left[\begin{array}{l}
\text { Tube Speed } \\
\text { Cusp Speed } \\
\text { Slow Speed }
\end{array}\right] \quad c_{\mathrm{T}}^{2}=\frac{c_{\mathrm{s}}^{2} V_{\mathrm{A}}^{2}}{c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}}
$$

$$
c_{\mathrm{F}}^{2} \equiv c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2} \quad\{\text { Fast Speed }]
$$

$$
\begin{array}{llll}
& \\
\hline
\end{array}
$$

$v_{\text {phase }}^{2}=\frac{c_{\mathrm{F}}^{2}}{2}\left[1 \pm \sqrt{\left.1-4\left(\frac{k_{z}}{k}\right)^{2} \frac{c_{\mathrm{T}}^{2}}{c_{\mathrm{F}}^{2}}\right]}\right.$
at the slow and fast

1 speeds. Blech!
speeds. Blech!

$$
\begin{aligned}
& \text { The tube speed is small if either the sound } \\
& \text { speed or the Alfvén speed are small compared } \\
& \text { to the other. This can be expressed through } \\
& \text { the plasma's } \beta \text {-parameter. }
\end{aligned} c_{\mathrm{T}}^{2}=\frac{c_{\mathrm{s}}^{2} V_{\mathrm{A}}^{2}}{c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}}
$$

$$
\beta=\frac{8 \pi P}{B^{2}}=\frac{2}{\gamma} \frac{c_{\mathrm{s}}^{2}}{V_{\mathrm{A}}^{2}}
$$

$$
c_{\mathrm{F}}^{2} \equiv c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}
$$

If $\beta \ll 1$ then $c^{2} \ll V$

Strong field limi
$c_{\mathrm{s}}^{2} \ll V_{\mathrm{A}}^{2}$
$c_{\mathrm{T}}^{2} \rightarrow c_{\mathrm{s}}^{2}$
$c_{\mathrm{F}}^{2} \rightarrow V_{\mathrm{A}}^{2}$

If $\beta \gg 1$ then $V_{\mathrm{A}}^{2} \ll c_{\mathrm{s}}^{2}$
Weak field limit $\quad c_{\mathrm{T}}^{2} \rightarrow V_{\mathrm{A}}^{2}$
$\frac{c_{\mathrm{T}}^{2}}{c_{\mathrm{F}}^{2}} \rightarrow \frac{V_{\mathrm{A}}^{2}}{c_{\mathrm{s}}^{2}} \ll 1$

Asymptotic Limits

$$
v_{\mathrm{phase}}^{2}=\frac{c_{\mathrm{F}}^{2}}{2}\left[1 \pm \sqrt{1-4\left(\frac{k_{z}}{k}\right)^{2} \frac{c_{\mathrm{T}}^{2}}{c_{\mathrm{F}}^{2}}}\right]
$$

If either the sound speed or Alfvén speed are much larger than the other the square root term may be simplified.

$$
\begin{gathered}
v_{\text {phase }}^{2}=\frac{c_{\mathrm{F}}^{2}}{2}\left[1 \pm\left(1-2\left(\frac{k_{z}}{k}\right)^{2} \frac{c_{\mathrm{T}}^{2}}{c_{\mathrm{F}}^{2}}+\cdots\right)\right] \\
v_{\text {fast }}^{2}=c_{\mathrm{F}}^{2}-\left(\frac{k_{z}}{k}\right)^{2} c_{\mathrm{T}}^{2}+\cdots \quad \text { Fast Mode } \\
v_{\text {slow }}^{2}=\left(\frac{k_{z}}{k}\right)^{2} c_{T}^{2}+\left(\frac{k_{z}}{k}\right)^{4} \frac{c_{T}^{4}}{c_{F}^{2}}+\cdots \text { Slow Mode }
\end{gathered}
$$

Synopsis

For $c_{\mathrm{s}}^{2} \ll V_{\mathrm{A}}^{2}$ or $c_{\mathrm{s}}^{2} \gg V_{\mathrm{A}}^{2}$
Fast Mode
(or equivalently $c_{\mathrm{F}}^{2} \gg c_{\mathrm{T}}^{2}$)
$v_{\text {phase }}^{2}=c_{\mathrm{F}}^{2}-\left(\frac{k_{z}}{k}\right)^{2}$
Slow Mode
$\omega^{2}=k_{z}^{2} c_{\mathrm{T}}^{2}$
$v_{\text {phase }}^{2}=\left(\frac{k_{z}}{k}\right)^{2} c_{T}^{2}$
Alfvén Mode
$\omega^{2}=k_{z}^{2} V_{\mathrm{A}}^{2}$
$\left.\because=\left(\frac{1}{t}\right)^{2}\right)^{2}$

Magnetosonic Forces

Explicit Forms

There are really only two forces at work: gas pressure and the Lorentz force. Gas pressure is aligned with the wavevector and the magnetic forces are perpendicular to the field.

Sometimes it's convenient to decompose the magnetic force into a magnetic pressure Π_{1} and tension T

$$
\begin{aligned}
\Pi_{1}=\frac{\rho_{0} c_{\mathrm{s}}^{2}}{\omega} k_{x} v_{x}
\end{aligned} \quad \begin{array}{r}
-\vec{\nabla} \Pi_{1}
\end{array} \quad-\frac{i \rho_{0} V_{\mathrm{A}}^{2}}{\omega} k_{x} v_{x} \vec{k} .
$$

Why is the Fast Mode Fast?

The fast mode is fast because this mode has a polarization that "maximizes" the restoring force.

Strong Field $\quad \frac{V_{\mathrm{A}}^{2}}{c_{\mathrm{s}}^{2}} \gg 1 \quad \beta \ll 1$
Magnetic Forces are maximized.

Fast Mode Speeds

$\omega^{2}=k^{2} c_{\mathrm{F}}^{2}-k_{z}^{2} c_{\mathrm{T}}^{2}+\ldots$	Asymptotic Dispersion Relation
$\vec{v}_{\text {phase }}=c_{\mathrm{F}} \hat{k}-\frac{1}{2}\left(\frac{k_{z}}{k}\right)^{2} \frac{c_{\mathrm{T}}^{2}}{c_{\mathrm{F}}} \hat{k}+\cdots$	Phase speed
$\vec{v}_{\text {group }}=\vec{v}_{\text {phase }}-\frac{k_{\mathrm{p}}}{k} \approx c_{\mathrm{F}} \hat{c_{\mathrm{F}}} \frac{c_{\mathrm{F}}^{2}}{c_{\mathrm{F}}} \hat{z}+\cdots$	$c_{\mathrm{F}}^{2} \equiv c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}$
	Group speed
$\vec{v}_{\mathrm{g}} \approx c_{\mathrm{F}} \hat{k}$	

Properties of the Fast Mode in the Asymptotic Regime ($c_{\mathrm{T}} \ll c_{\mathrm{F}}$)

- The fast mode propagates at slightly less than the fast speed.
- The group speed points largely in the direction of the wavevector, with a small additional component along the field.

Why is the Slow Mode Slow?

The slow mode is slow because this mode has a polarization that

~Ducted Sound Wave
$\vec{M}_{1}=-\frac{i \rho_{0} V_{\mathrm{A}}^{2}}{\omega} k^{2} v_{x} \hat{x}$
$\begin{aligned} \vec{v} & =v \hat{z}-\frac{k_{x} k_{z}}{k^{2}} \frac{c_{\mathrm{s}}^{2}}{V_{\mathrm{A}}^{2}} \\ \omega^{2} & =k_{z}^{2} c_{\mathrm{s}}^{2}-\end{aligned}$

Weak Field Limit $\beta \gg 1$

ω^{2}	$=k_{z}^{2} V_{\mathrm{A}}^{2}-\frac{k_{x}^{2} k_{z}^{2}}{k^{2}} \frac{V_{\mathrm{A}}^{4}}{c_{\mathrm{s}}^{2}}+\ldots$	Dispersion Relation (Eigenvalue)
\vec{v}	$=v \hat{k} \times \hat{y}+\frac{k_{z}}{k} \frac{V_{\mathrm{A}}^{2}}{c^{2}} v \hat{x}+\cdots$	Polarization (Eigenvector)

The slow mode is a tension wave. Not because the pressures are small compared to the tension, but because the gas and magnetic pressure to leading order cancel each other (equal magnitude and 180 degrees out of phase

$$
\begin{aligned}
& -\vec{\nabla} P_{1}=-\frac{i \rho_{0} c_{\mathrm{s}}^{2}}{\omega}(\vec{k} \cdot \vec{v}) \vec{k} \quad \Rightarrow \quad-\frac{i \rho_{0} V_{\mathrm{A}}^{2}}{\omega} k_{x} k_{z} v \hat{k} \\
& -\vec{\nabla} \Pi_{1}=-\frac{i \rho_{0} V_{\mathrm{A}}^{2}}{\omega} k_{x} v_{x} \vec{k} \quad \Rightarrow \quad \frac{i \rho_{0} V_{\mathrm{A}}^{2}}{\omega} k_{x} k_{z} v \hat{k} \\
& \vec{T}_{1}=\frac{i \rho_{0} V_{\mathrm{A}}^{2}}{\omega} k_{z} v_{x}(\vec{k} \times \hat{y}) \quad \Rightarrow \quad-\frac{i \rho_{0} V_{\mathrm{A}}^{2}}{\omega} k_{z}^{2} v(\hat{k} \times \hat{y})
\end{aligned}
$$

\square

Bonus Mathematics

Slow Mode Speeds

$$
\begin{array}{cc}
\omega^{2}=k_{z}^{2} c_{\mathrm{T}}^{2}+\frac{k_{z}^{4}}{k^{2}} \frac{c_{T}^{4}}{c_{F}^{2}}+\cdots & \text { Asymptotic Dispersion Relation } \\
\vec{v}_{\text {phase }}=\frac{k_{z}}{k} c_{\mathrm{T}} \hat{k}+\frac{1}{2} \frac{k_{z}^{2}}{k^{2}} \frac{c_{T}^{2}}{c_{F}^{2}}+\cdots & \text { Phase speed }
\end{array} c_{\mathrm{T}}^{2}=\frac{c_{\mathrm{s}}^{2} V_{\mathrm{A}}^{2}}{c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}}
$$

Properties of the Slow Mode in the Asymptotic Regime ($c_{\mathrm{T}} \ll c_{\mathrm{F}}$)

- The slow mode propagates (phase) slower than the slow speed.
- The slow mode doesn't propagate (group) perpendicular to the field.
- The group speed points largely in the direction of the field, with a magnitude equal to the slow speed.

Asymptotics for the Fast Mode for Very Small Slow Speed

Asymptotics for the Slow Mode for Very Small Slow Speed

Weak Field Limit $\beta \gg 1$

$$
\begin{array}{rlr}
\omega^{2} & =k_{z}^{2} V_{\mathrm{A}}^{2}-\frac{k_{x}^{2} k_{z}^{2}}{k_{i}^{2}} \frac{V_{\mathrm{A}}^{4}}{c_{\mathrm{s}}^{2}}+\ldots & \text { Dispersion Relation (Eigenvalue) } \\
\vec{v} & =v\left(\hat{k} \times \hat{y}+\frac{k_{z}}{k} \frac{V_{\mathrm{A}}^{2}}{c_{\mathrm{s}}^{2}} \hat{x}+\cdots\right) & \text { Polarization (Eigenvector) }
\end{array}
$$

The slow mode is a tension wave. Not because the pressures are small compared to the tension, but because the gas and magnetic pressure to leading order cancel each other (equal magnitude and 180 degrees out of phase.

$$
\begin{array}{ccc}
-\vec{\nabla} P_{1}=-\frac{i \rho_{0} c_{\mathrm{s}}^{2}}{\omega}(\vec{k} \cdot \vec{v}) \vec{k} & \Rightarrow & -\frac{i \rho_{0} V_{\mathrm{A}}^{2}}{\omega} k_{x} k_{z} u \hat{k} \\
-\vec{\nabla} \Pi_{1}=-\frac{i \rho_{0} V_{\mathrm{A}}^{2}}{\omega} k_{x} v_{x} \vec{k} \Rightarrow & \frac{i \rho_{0} V_{\mathrm{A}}^{2}}{\omega} k_{x} k_{z} u \hat{k} \\
\vec{T}_{1}=\frac{i \rho_{0} V_{\mathrm{A}}^{2}}{\omega} k_{z} v_{x}(\vec{k} \times \hat{y}) & \Rightarrow & -\frac{i \rho_{0} V_{\mathrm{A}}^{2}}{\omega} k_{z}^{2} u(\hat{k} \times \hat{y})
\end{array}
$$

Perpendicular Propagation

If the wave is propagating purely perpendicular to the magnetic field $k_{z}=0$

$$
\begin{aligned}
& \omega^{2}=\frac{k^{2}}{2}\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right) \pm \frac{k^{2}}{2} \sqrt{\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right)^{2}-4 \frac{k_{z}^{2}}{k^{2}} c_{\mathrm{s}}^{2} V_{\mathrm{A}}^{2}} \\
& \left(\frac{\omega}{k}\right)^{2}=\frac{1}{2}\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right) \pm \frac{1}{2} \sqrt{\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right)^{2}} \\
& \left(\frac{\omega}{k}\right)^{2}=\frac{1}{2}\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right) \pm \frac{1}{2}\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right) \\
& \left(\frac{\omega}{k}\right)^{2}=0 \text { or } c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2} \quad \begin{array}{l}
\text { The slow wave doesn't propagate } \\
\text { The fast wave is a magnetosonic pressure }
\end{array} \\
& \text { wave }
\end{aligned}
$$

Parallel Propagation

If the wave is propagating purely parallel to the magnetic field $k_{x}=0$
$\omega^{2}=\frac{k^{2}}{2}\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right) \pm \frac{k^{2}}{2} \sqrt{\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right)^{2}-4 \frac{k_{z}^{2}}{k^{2}} c_{\mathrm{s}}^{2} V_{\mathrm{A}}^{2}}$
$\left(\frac{\omega}{k}\right)^{2}=\frac{1}{2}\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right) \pm \frac{1}{2} \sqrt{\left(c_{\mathrm{s}}^{2}+V_{\mathrm{A}}^{2}\right)^{2}-4 c_{\mathrm{s}}^{2} V_{\mathrm{A}}^{2}}$

$$
\left(\frac{\omega}{k}\right)^{2}=\frac{1}{2}\left(c_{s}^{2}+V_{A}^{2}\right) \pm \frac{1}{2}\left(c_{s}^{2}-V_{A}^{2}\right)
$$

