## ASTR 7500: Solar and Stellar Magnetism Hale CGEP Solar \& Space Physics



Ben Brown, Prof. Juri Toomre \& friends
Lecture 20
Thurs 4 April 2013
http://zeus.colorado.edu/astr7500-toomre

## This time

- Catching flares on M-dwarf stars

- Global-scale dynamo action in stars like the Sun
- Emergence of large-scale flows (differential rotation) from rotation and convection; dynamo generation of organized magnetic field.
- These simulations suggest that large-scale, organized field can be built in the convection zone, can cyclicly reverse. All without relying on a tachocline as a fundamental component.
http://www.astro.wisc.edu/~bpbrown/Movies/


## White light flares on K-stars






Contain about $50 \%$ of the energy released in flare. Kepler sees on variety of K- and M-dwarf stars.

## Last time

- We see signatures of magnetism on other stars
- Short-time-variable signatures include: photometry (spots; rotation period: days), ZDI magnetic maps (rotation period: days), flares (minutes-hours).
- Long-time-variable signatures include: chromospheric emission (e.g., Ca H\&K; H-alpha), coronal X-ray emission, total surface flux.
- We see cycles on many other stars. Shortest is $\sim 1.5$ years; typical is $\sim 10$ years (similar to Sun).


## Stellar Flares

- We see stellar flares on other stars
- M-dwarf "flare-stars" can be very active: major flares (solar X-class) every few hours/days
- Seen in X-rays; also seen in white light (optical). Optical emission thought to carry $\sim 50 \%$ of total flare energy. Easier to see on K- and M-dwarfs.
- Photometric monitoring ( $1-4 \mathrm{~m}$ class science) and spectral monitoring ( $4-10 \mathrm{~m}$ class science) are possible; key is continuous coverage.
- Major source of variability for time-domain astronomy surveys. Especially LSST.

See work by: A. Kowalski, S. Schmidt, E. Hilton, J. Davenport, L. Walkowicz and other members of S. Hawley's extended group.

Megaflares on tiny stars



## Megaflares on tiny stars



10m telescope; M-dwarf star. 15 second time resolution
http://www.astro.wisc.edu/~bpbrown/Movies/ (Brown et al.; obs Jan 2012, SALT/RSS)

## Magnetic Activity

 in Solar-like Stars


## Rotation Period



## Inside the Sun



## MHD Induction equation

$$
\frac{\partial \boldsymbol{B}}{\partial t}=\boldsymbol{\nabla} \times(\boldsymbol{u} \times \boldsymbol{B}+\eta \boldsymbol{\nabla} \times \boldsymbol{B})
$$

or, expanding the cross product:

$$
\frac{\partial \boldsymbol{B}}{\partial t}=-(\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{B}-\boldsymbol{B}(\boldsymbol{\nabla} \cdot \boldsymbol{u})+(\boldsymbol{B} \cdot \boldsymbol{\nabla}) \boldsymbol{u}+\eta \nabla^{2} \boldsymbol{B}
$$




## Importance of Sound-Proof Equations



- What do we really mean by "compressible"?
- Want to capture effects of density stratification ( $\sim 5$ density scale heights between 0.72-0.98 $R$; several thousand more to photosphere). Leads to up/down asymmetries in convection.
(broad upflows, narrow downflows)
- Cannot afford to follow sound waves (deep flows are $10^{-4}$ slower than sound). Hence "anelastic" equations. These work great in stellar convection zones, can extend them for dynamics in stellar radiative zones. (Brown, Vasil \& Zweibel, 2012; Vasil et al. 2013)


## Convection in G-type stars


(Brown et al. 2008)

## Flows in F- and M-type stars



Rough Scaling laws (F- to G-stars)

$\Delta \Omega \propto\left(\frac{M}{M_{\odot}}\right)^{4}\left(\frac{\Omega_{0}}{\Omega_{\odot}}\right)^{0.5} \propto \mathrm{Ro}^{-1}$
$\operatorname{MCKE} \propto\left(\frac{M}{M_{\odot}}\right)^{-1}\left(\frac{\Omega_{0}}{\Omega_{\odot}}\right)^{-0.8} \propto \mathrm{Ro}$


Extending now to K-, M-dwarfs.
Caveat: parameter space is large; these sample a limited portion.
(Ballot et al. 2007, Brown et al. 2008, Augustson et al. 2012)

Convection Zone Dynamos:
Magnetic Wreaths
Without Tachoclines


## Convection Zone Dynamos:

 but with Global-scale Reversals

## Next Step: Sunspots and Buoyant Magnetic Loops?



A Special Case: Persistent Dynamos


Stellar Dynamos: Many flavors



What the future holds: observation
So you want to
see a star:


What the future holds: observation

| Star | $\lambda / D \quad$ size |  |  |
| :---: | :---: | :---: | :---: |
| T Boo (F6IV)* | $\begin{aligned} & 1.4 \mathrm{Ro} \quad 0.8 \text { mas } \\ & 15 \mathrm{pc} \end{aligned}$ |  |  |
| Vega (AOV) | $\begin{aligned} & 2.8 \mathrm{Ro} \quad 3.4 \text { mas } \\ & 7.8 \mathrm{pc} \end{aligned}$ |  |  |
| Betelguese (M21) | $\begin{aligned} & \begin{array}{l} 1200 \mathrm{R} 。 \\ 200 \mathrm{pc} \end{array} \quad 60 \mathrm{mas} \end{aligned}$ | + | H20 |
| $\alpha$ Cen (G2V) | $\begin{aligned} & 1.4 \mathrm{R} \quad \\ & 1.3 \mathrm{pc} \end{aligned} \quad 7.4 \text { mas }$ |  | . |
| Obs | $\lambda / D$ | resolution | $\sim$ |
| Hubble | $\begin{gathered} 200-1700 \mathrm{~nm} \\ 2.4 \mathrm{~m} \end{gathered}$ | $15-150$ mas |  |
| VLA | $\begin{gathered} 7 \mathrm{~mm} \\ 36 \mathrm{~km} \end{gathered}$ | 40 mas | Magdalena Ridge |
| MRO or CHARA | $\begin{gathered} 550 \mathrm{~nm} \\ \sim 340 \mathrm{~m} \end{gathered}$ | 0.3 mas |  |
| VLBI | $\begin{gathered} 7 \mathrm{~mm} \\ 12000 \mathrm{~km} \end{gathered}$ | 0.1 mas [1] | * exoplanet host: $\mathrm{Rorb}_{\text {orb }} \sim 7 \mathrm{R}^{*}$ <br> [I] Bartell et al, Nature, I988! |

What the future holds: computation
Microprocessor Transistor Counts 1971-2011 \& Moore's Law


## What we learned today

- M-dwarf stars have huge and frequent flares.
- Computation is permitting 3-D simulations of global stellar convection and dynamo action.
- Rotation and convection couple to build flows of differential rotation and meridional circulation.
- These simulations suggest that large-scale, organized field can be built in the convection zone, can cyclicly reverse. All without relying on a tachocline as a fundamental component.


## Learning more about stellar dynamos

"Astrophysical magnetic fields and nonlinear dynamo theory," Axel Brandenburg, Kandaswamy Subramanian,
http://adsabs.harvard.edu/abs/2005PhR...417....1B
"Dynamo models of the solar cycle," Paul Charbonneau, http://solarphysics.livingreviews.org/Articles/Irsp-2010-3/
"Large-scale dynamics of the convection zone and tachocline," Mark Miesch. http://solarphysics.livingreviews.org/Articles//rsp-2005-1/

Convection and wreath-dynamo movies
http://www.astro.wisc.edu/~bpbrown/Movies/
Next time: MHD waves (Brad Hindman)

