

Last time

- We see signatures of magnetism on other stars
- Short-time-variable signatures include: photometry (spots; rotation period: days), ZDI magnetic maps (rotation period: days), **flares** (minutes-hours).
- Long-time-variable signatures include: chromospheric emission (e.g., Ca H&K; H-alpha), coronal X-ray emission, total surface flux.
- We see cycles on many other stars. Shortest is ~1.5 years; typical is ~10 years (similar to Sun).

This time

Catching flares on M-dwarf stars

- · Global-scale dynamo action in stars like the Sun
- Emergence of large-scale flows (differential rotation) from rotation and convection; dynamo generation of organized magnetic field.
- These simulations suggest that large-scale, organized field can be built in the convection zone, can cyclicly reverse. All without relying on a tachocline as a fundamental component.

http://www.astro.wisc.edu/~bpbrown/Movies/

Stellar Flares

- · We see stellar flares on other stars
- M-dwarf "flare-stars" can be very active: major flares (solar X-class) every few hours/days
- Seen in X-rays; also seen in white light (optical). Optical emission thought to carry ~50% of total flare energy. Easier to see on K- and M-dwarfs.
- Photometric monitoring (1-4m class science) and spectral monitoring (4-10m class science) are possible; key is continuous coverage.
- Major source of variability for time-domain astronomy surveys. Especially LSST.

See work by: A. Kowalski, S. Schmidt, E. Hilton, J. Davenport, L. Walkowicz and other members of S. Hawley's extended group.

Megaflares on tiny stars

Global Dynamo Models

2D: Mean-field models

- α - Ω type
- interface dynamos
 flux-transport and ma
- flux-transport and many variants (e.g. Babcock-Leighton)

Computationally inexpensive: simulate many cycles, try many ideas In a position to try solar predictions (but parameterize convection)

D1

D2

D3

D4

3D: Convection, Rotation & Magnetism

- global-scale flows, magnetism, coupling from first principles
- now achieving cyclic behavior, buoyant magnetic structures Computationally expensive
- Solar parameters well out of reach

Dynamo SSN cycle 24 predictions

(Pesnell 2012, SoPhys)

SSN min

SSN max

current cycle 24

best estimate

3000 4000 5000 6000 7000 days

Moving past cartoons: Simulations of Convective Dynamos Anelastic Spherical Harmonic (ASH) code

Solar convection (Miesch et al. 2008)

- Capture 3-D MHD convection at high resolution on massivelyparallel supercomputers (~1000 processors for ~1 year)
- Study <u>turbulent convection</u> <u>interacting with rotation</u> in bulk of solar CZ: 0.72 *R* - 0.97 *R*
- Realistic stellar structure
- <u>Simplified physics</u>: perfect gas, radiative diffusivity, compressible, overly large diffusions, MHD
- <u>Correct global spherical geometry</u>
- Study effects of more rapid rotation

• Cannot afford to follow sound waves (deep flows are 10⁻⁴ slower than sound). Hence "anelastic" equations. These work great in stellar convection zones, can extend them for dynamics in stellar radiative zones.

(Brown, Vasil & Zweibel, 2012; Vasil et al. 2013)

Stellar Dynamos: Many flavors Failed 5 Dynamos D1.5 Persistent 3 Ά $\eta \ (cm^2 \ s^{-1})$ 0/0 2 0/C? ____ D5 Ŕ D10 O/C? 10¹² OC Α D1 Cyclic o 7 5 Strong DR Feedback M3,0/C 0.5 1 3 5 10 15 Brown et al. 2010, 2011 Also see Ghizaru et al. 2010, Ω/Ω_{\odot}

Nelson et al. 2011

Racine et al. 2011

What the future holds: observation								
So you	wan	t to						
see a stal.								
Star	λ/D	size						
т Воо (F6IV)*	I.4 R₀ I5 pc	0.8 mas						
Vega (A0V)	2.8 R _o 7.8 pc	3.4 mas						
Betelguese (M2I)	I 200 R₀ 200 рс	60 mas						
α Cen (G2V)	I.4 R。 I.3 рс	7.4 mas						
Obs	λ/D		resolution					
Hubble	200-1700 nm 2.4 m		15-150 mas	Betelgeuse with Hubble (APOD 6/5/99) * exoplanet host: Ruey~ 78*				
VLA	7mm 36 km		40 mas					

What the future holds: observation

Star	λ/D	size			
т Воо (F6IV)*	I.4 R₀ I5 pc	0.8 mas			
Vega (A0V)	2.8 R _o 7.8 pc	3.4 mas	And and	- The second sec	
Betelguese (M2I)	1200 R _o 200 pc	60 mas		Al . Marine	
α Cen (G2V)	I.4 R₀ I.3 pc	7.4 mas	T	- States	
Obs	λ/D		resolution		
Hubble	200-1700 nm 2.4 m		15-150 mas		
VLA	7mm 36 km		40 mas	Magdalena Ridge	
MRO or CHARA	550 nm ~340 m		0.3 mas	Interferometer	
VLBI	7mm I 2000 km		0.1 mas [1]	* exoplanet host: R_{orb}~ 7R * [1] Bartell et al, Nature, 1988!	

What the future holds: observation

How about seeing inside a star: Asteroseismology

THE ASTROPHYSICAL JOURNAL, 723:1583-1598, 2010 November 10

A PRECISE ASTEROSEISMIC AGE AND RADIUS FOR THE EVOLVED SUN-LIKE STAR KIC 11026764

T. S. METCALFE¹, M. J. P. F. G. MONTERG², M. J. THOMPSON^{3,1}, J. MOLENDA-ŻAKOWICZ⁴, T. APPOURCHAUX⁵, W. J. CHAPLIN⁶,
 G. DOĞAN⁷, P. EGGENIRBEGE⁸, T. R. BEIDDING⁹, H. BRUNT¹⁰, O. L. CREPVEY^{11,12}, P.-O. QUERON¹³, D. STELLO⁶, A. BONANNO⁴,
 V. SILVA AURRE¹⁵, S. BAU¹⁵, D. SAT¹⁶, N. GAI^{16,17}, M. P. DI MAURO¹⁵, A. G. KOSOVICH¹⁰, A. DI NAURO¹⁵,
 J. C. SUÁREZ²¹, A. MONA²¹, L. PAU², R. A. GARCÍA³², J. P. MARQUES²⁴, A. FRASCA¹⁴, K. BIAZZO²⁵, S. G. SOSZA³, S. D. BERZILR³⁰,
 M. BAZOT⁷, C. KAROP⁴⁵, S. FRANKEN⁷, P. A. WINSO^{27,23}, J. FRASCA¹⁴, K. BIAZZO²⁵, S. G. SOSU³, S. G. DEREZILR³⁰,
 H. KILLDSEN⁷, T. L. CAMPANTE³⁷, S. T. FLETCHER³¹, R. HANDRERG⁷, C. RGULD^{11,12}, D. SLALBER^{11,11}, J. SCHOU¹⁹,
 G. A. VEINER²⁷, J. BALLO¹⁷, A.-M. BROOM¹³, J. WENOWT¹⁶, S. H. KREK⁸, D. HORE⁴⁵, S. MATIU⁴⁷, R. NKW³¹,
 I. W. ROXBURGH^{10,32}, K. H. SATO²¹, T. R. WHITE⁹, W. J. BORUCKI⁴⁴, D. G. KOCH⁴⁴, AND J. M. JENKINS³³

3-month program and associated conference at KITP http://online.itp.ucsb.edu/online/asteroseismo-c11/

What we learned today

- M-dwarf stars have huge and frequent flares.
- Computation is permitting 3-D simulations of global stellar convection and dynamo action.
- Rotation and convection couple to build flows of differential rotation and meridional circulation.
- These simulations suggest that large-scale, organized field can be built in the convection zone, can cyclicly reverse. All without relying on a tachocline as a fundamental component.

Learning more about stellar dynamos

"Astrophysical magnetic fields and nonlinear dynamo theory," Axel Brandenburg, Kandaswamy Subramanian, http://adsabs.harvard.edu/abs/2005PhR...417....1B

"Dynamo models of the solar cycle," Paul Charbonneau, http://solarphysics.livingreviews.org/Articles/Irsp-2010-3/

"Large-scale dynamics of the convection zone and tachocline," Mark Miesch. http://solarphysics.livingreviews.org/Articles/Irsp-2005-1/

Convection and wreath-dynamo movies

http://www.astro.wisc.edu/~bpbrown/Movies/

Next time: MHD waves (Brad Hindman)