ASTR 7500: Solar and Stellar Magnetism Hale CGEP Solar \& Space Physics

Ben Brown, Prof. Juri Toomre \& friends
Lecture 19
Tues 2 April 2013 http://zeus.colorado.edu/astr7500-toomre

This time: Observing stellar magnetic fields \& activity

Question:

- Based on what we've learned about the Sun, what signatures of magnetism might we look for on other stars?

NJIT: give me a non-time-varying signature Hawaii: give me a time-variable signature HAO: give me a direct spectral signature Others: have we missed any?

- Signatures of magnetism in other stars (spots, chromospheric \& coronal heating)
- Mapping magnetic fields
- Following stellar cycles
- Flares on other stars (M-dwarfs can have very large flares; 100x change in stellar flux!)

Next time: Simulations of stellar dynamos

Sunspots \& Solar Cycles 11-24

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

Solar Cycles 11-24

- Solar 11-year cycles fairly constant in period, variable in amplitude. ~ 400 years of data.
- Occasional "grand minima" (Maunder)

Proxies for Magnetic Activity

Pevtsov et al. 2003, "The relationship between X-ray radiance and magnetic flux"

Magnetic Activity in Other Suns

Starspots on other Suns

How do we measure magnetic flux?

spectra: direct Zeeman splitting, or spectropolarimetry: circular polarization [line of sight] \& linear polarization [transverse field]
"Observations of cool-star magnetic fields," Ansgar Reiners, http://solarphysics.livingreviews.org/Articles/Irsp-2012-1/

Magnetic Activity in Other Suns

Mapping Stellar Fields with ZDI

Mapping Stellar Fields

Weak signature (1/1000), so average over many thousands of lines to increase signal-to-noise (LSD = Least Squares Deconvolution). Inverse problem: deep questions about impact of averaging, etc.
(Donati \& Landstreet, 2009, ARA\&A)

Mapping Stellar Fields with ZDI

Mapping Stellar Cycles

- Now found for several other stars, spanning from F- to G-type at variety of rotation rates (purple stars in fig). Not yet found for lower mass (late G-, K-type).

- The international Bcool project is actively continuing this work for solar-type stars. Expect mapping magnetic cycles will be a major stellar magnetism focus in next decade.
(Morgenthaler et al. 2011, 2012; Petit et al. 2012)

- ZDI maps show magnetic reversal during a cycle in rapidly rotating solar-type star. (Petit et al. 2009)
- ZDI is a difficult inverse problem; major hounds-and-hares exercises are ongoing within the Bcool project using modern stellar dynamo simulations.
- Also done for massive stars by MiMeS project.

Cycles in other stars: Mount Wilson project

- Monitor ~100 solar-type stars (F - through K-), every few nights, for ~ 30 years
- Measure CaH\&K as activity proxy
- Found cycles in ~25 stars (F7-K7)
- Dependence on stellar parameters unclear so far

(Wilson 1968, Baliunas et al. 1995, Bohm-Vitense 2007)

What we learned today

- We see signatures of magnetism on other stars
- Short-time-variable signatures include: photometry (spots; rotation period), ZDI magnetic maps (rotation period), flares (minutes-hours).
- Long-time-variable signatures include: chromospheric emission (e.g., Ca H\&K; H-alpha), coronal X-ray emission, total surface flux.
- We see cycles on many other stars. Shortest is ~ 1.5 years; typical is ~ 10 years (similar to Sun).

Mt Wilson project ended in early 2000's; Lowell observatory continuing observations, some observations by SMARTS (2007-2012). Hard, long term monitoring projects but very necessary for understanding cycles.

Questions of Solar and Stellar Magnetism

- How does the solar dynamo build organized magnetic fields that survive transiting the turbulent convection zone?
- Why do the global solar fields cyclically reverse polarity?
-What role does rotation play in the dynamo?
- Is the Sun a typical magnetic star?

Next time: Simulations of stellar dynamos

Global Dynamo Models

2D: Mean-field models - $\alpha-\Omega$ type

- interface dynamos
- flux-transport and many variants (e.g. Babcock-Leighton)

Computationally inexpensive: simulate many cycles, try many ideas
In a position to try solar predictions (but parameterize convection)
3D: Convection, Rotation \& Magnetism

- global-scale flows, magnetism, coupling from first principles
- now achieving cyclic behavior, buoyant magnetic structures
Computationally expensive
Solar parameters well out of reach

Learning more about stellar magnetic activity

"Observations of cool-star magnetic fields," Ansgar Reiners, http://solarphysics.livingreviews.org/Articles//rsp-2012-1/
"Magnetic fields of nongenerate stars," J.F. Donati \& J.D. Landstreet, 2009, Annual Reviews in Astronomy and Astrophysics

Next time: Simulations of stellar dynamos

