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Summary: Mean field theory

Average of induction equation:

∂B

∂t
= ∇×

(
v′ × B′ + v × B− η∇× B

)
New solution properties arie from the term:

E = v′ × B′

Assumption of scale separation in time and space:

E i = aijB j + bijk
∂B j

∂xk

54 / 84

Summary: Mean field theory

Some reordering of terms:

E = αB + γ × B− β ∇× B− δ ×∇× B + . . .

α, β: symmetric tensors

γ, δ: vectors

Symmetry constraints imply:

α, δ: pseudo tensor (related to helicity and rotation)

β, γ: true tensors

55 / 84

Summary: Mean field theory

Assumption isotropy (non mirror-symmetric, weakly
inhomogeneous):

∂B

∂t
= ∇×

[
αB + (v + γ)× B− (η + ηt) ∇× B

]
with the scalar quantities

α = −1

3
τc v′ · (∇× v′), ηt =

1

3
τc v′2

and vector

γ = −1

6
τc∇v′2 = −1

2
∇ηt
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Turbulent diffusivity - destruction of magnetic field

Turbulent diffusivity dominant dissipation process for large scale
field in case of large Rm:

ηt =
1

3
τc v′2 ∼ L vrms ∼ Rmη � η

Formally ηt comes from advection term (transport term,
non-dissipative)

Turbulent cascade transporting magnetic energy from the
large scale L to the micro scale lm (advection + reconnection)

ηj2m ∼ ηt j
2 −→ Bm

lm
∼
√

Rm
B

L

Important: The large scale determines the energy dissipation rate,
lm adjusts to allow for the dissipation on the microscale.
Present for isotropic homogeneous turbulence
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Turbulent diamagnetism, turbulent pumping

Expulsion of flux from regions with larger turbulence intensity
’diamagnetism’

γ = −1

2
∇ηt

Turbulent pumping (stratified convection):

γ = −1

6
τc∇v′2

Upflows expand, downflows converge

Stronger velocity and smaller filling factor of downflows

Mean induction effect of up- and downflow regions does not
cancel

Downward transport found in numerical simulations

Requires inhomogeneity (stratification)
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Kinematic α-effect

α = −1

3
τc v′ · (∇× v′) Hk = v′ · (∇× v′) kinetic helicity

Requires rotation + additional preferred direction (stratification)
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Babcock-Leighton α-effect

Similar to kinetic α-effect, but driven by magnetic buoyancy

Leading polarities have larger propability to reconnect across
equator with counterpart on other hemisphere

Polarity of hemisphere = polarity of following sunspots
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Fast or slow dynamo?

Turbulent induction effects require reconnection to operate;
however, the expressions

αij =
1

2
τc

(
εiklvk

′∂vl
′

∂xj
+ εjklvk

′∂vl
′

∂xi

)
γi = −1

2
τc

∂

∂xk
v ′i v

′
k

βij =
1

2
τc

(
v′2δij − vi

′vj
′
)

are independent of η (in this approximation), indicating fast
dynamo action (no formal proof since we made strong
assumptions!)
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How well does this work in practice?

From Racine et al. 2011
62 / 84

How well does this work in practice?

α = −1
3τc v′ · (∇× v′)

From Racine et al. 2011
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Generalized Ohm’s law

What is needed to circumvent Cowling’s theorem?

Crucial for Cowling’s theorem: Impossibility to drive a current
parallel to magnetic field

Cowling’s theorem does not apply to mean field if a mean
current can flow parallel to the mean field (since total field
non-axisymmetric this is not a contradiction!)

j = σ̃
(
E + v × B + γ × B + αB

)
σ̃ contains contributions from η, β and δ.
Ways to circumvent Cowling:

α-effect

anisotropic conductivity (off diagonal elements + δ-effect)
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Meanfield energy equation

d

dt

∫
B

2

2µ0
dV = −µ0

∫
ηj

2
dV −

∫
v · (j× B) dV +

∫
j · E dV

Energy conversion by α-effect ∼ αj · B
α-effect only pumps energy into meanfield if meanfield is
helical (current helicity must have same sign as α)!

Dynamo action does not necessarily require that j · E is an
energy source. It can be sufficient if E changes field topology
to circumvent Cowling, if other energy sources like differential
rotation are present (i.e. Ω× j effect).
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α2-dynamo

Induction of field parallel to current (producing helical field!)

∂B

∂t
= ∇×

(
αB
)

= αµ0j

Dynamo cycle:
Bt

α−→ Bp
α−→ Bt

Poloidal and toroidal field of similar strength

In general stationary solutions
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α2 model for Geodynamo

Strong influence of rotation
τrot = 1 day, τc ∼ 1000 years
(Sun: τrot = 27 days, τc ∼ weeks)

Flow organization: Taylor columns

Secondary flow along columns
(boundary effect) → helicity
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α2 model for Geodynamo

B between reversals: B during reversals:

Credit: 3D geodynamo simulation G.A. Glatzmaier (UCSC)
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αΩ-, α2Ω-dynamo

Dynamo cycle:

Bt
α−→ Bp

Ω, α−→ Bt

Toroidal field much stronger that poloidal field

In general traveling (along lines of constant Ω) and periodic
solutions

Movie α-effect Movie Ω-effect
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αΩ-dynamo

∂B

∂t
= r sin Bp ·∇Ω + ηt

(
∆− 1

(r sin θ)2

)
B

∂A

∂t
= αB + ηt

(
∆− 1

(r sin θ)2

)
A

Cyclic behavior:

P ∝ (α|∇Ω|)−1/2

Propagation of magnetic field along
contourlines of Ω “dynamo-wave”

Direction of propagation
“Parker-Yoshimura-Rule”:

s = α∇Ω× eφ Movie: αΩ-dynamo
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αΩ-dynamo with meridional flow

∂B

∂t
+

1

r

(
∂

∂r
(rvrB) +

∂

∂θ
(vθB)

)
= r sin Bp ·∇Ω

+ ηt

(
∆− 1

(r sin θ)2

)
B

∂A

∂t
+

1

r sin θ
vp ·∇(r sin θA) = αB + ηt

(
∆− 1

(r sin θ)2

)
A

If ηt is sufficiently small, such that:

τd = D2
CZ/ηt > DCZ/vm −→ ηt < vmDCZ

the meridional flow vm can control the cycle period and
propagation of the magnetic activity

Additional advection like effects can arise from the γ-effect,
they can be accounted for by formally substituting:

vm −→ vm + γ
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αΩ-dynamo with meridional flow

Meridional flow:

Poleward at top of convection zone

Equatorward at bottom of convection zone

Effect of advection:

Equatorward propagation of activity

Correct phase relation between poloidal and toroidal field

Circulation time scale of flow sets dynamo period

Requirement: Sufficiently low turbulent diffusivity

Movie: Flux-transport-dynamo (M. Dikpati, HAO)
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Ω× J dynamo

∂B

∂t
= ∇× [δ × (∇× B)] ∼ ∇× (Ω× j) ∼ ∂j

∂z

similar to α-effect, but additional z-derivative of current

couples poloidal and toroidal field

δ2 dynamo is not possible:

j · E = j · (δ × j) = 0

δ-effect is controversial (not all approximations give a
non-zero effect)

in most situations α dominates
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Dynamos and magnetic helicity

Magnetic helicity (integral measure of field topology):

Hm =

∫
A · B dV

has following conservation law (no helicity fluxes across
boundaries):

d

dt

∫
A · B dV = −2µ0 η

∫
j · B dV

Decomposition into small and large scale part:

d

dt

∫
A · B dV = +2

∫
E · B dV − 2µ0 η

∫
j · B dV

d

dt

∫
A′ · B′ dV = −2

∫
E · B dV − 2µ0 η

∫
j′ · B′ dV
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Dynamos and magnetic helicity

Dynamos have helical fields:

α-effect induces magnetic helicity of same sign on large scale

α-effect induces magnetic helicity of opposite sign on small
scale

Asymptotic staturation (time scale ∼ Rmτc):

j′ · B′ = −j · B −→ |B|
|B ′|

∼
√

L

lc

j′ · B′ = −αB
2

µ0η
+

ηt

η
j · B

Time scales:

Galaxy: ∼ 1025 years (Rm ∼ 1018, τc ∼ 107 years)

Sun: ∼ 108 years

Earth: ∼ 106 years
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Non-kinematic effects

Proper way to treat them: 3D simulations

Still very challenging

Has been successful for geodynamo, but not for solar dynamo

Semi-analytical treatment of Lorentz-force feedback in mean field
models:

Macroscopic feedback: Change of the mean flow (differential
rotation, meridional flow) through the mean Lorentz-force

f = j× B + j′ × B′

Mean field model including mean field representation of full
MHD equations:
Movie: Non-kinematic flux-transport dynamo

Microscopic feedback: Change of turbulent induction effects
(e.g. α-quenching)
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Microscopic feedback

Feedback of Lorentz force on small scale motions:

Intensity of turbulent motions significantly reduced if
1

2µ0
B2 > 1

2%v2
rms . Typical expression used

α =
αk

1 + B
2

B2
eq

with the equipartition field strength Beq =
√

µ0%vrms

Similar quenching also expected for turbulent diffusivity

Additional quenching of α due to topological constraints
possible (helicity conservation)
Controversial !
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Microscopic feedback

Symmetry of momentum and induction equation v′ ↔ B′/
√

µ0%:

dv′

dt
=

1

µ0%
(B ·∇)B′ + . . .

dB′

dt
= (B ·∇)v′ + . . .

E = v′ × B′

Strongly motivates magnetic term for α-effect (Pouquet et al.
1976):

α =
1

3
τc

(
1

%
j′ · B′ − ω′ · v′

)

Kinetic α: B + v′ −→ B′ −→ E
Magnetic α: B + B′ −→ v′ −→ E
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Microscopic feedback

From helicity conservation one expects

j′ · B′ ∼ −αB
2

leading to algebraic quenching

α =
αk

1 + g B
2

B2
eq

With the asymptotic expression (steady state)

j′ · B′ = −αB
2

µ0η
+

ηt

η
j · B

we get

α =
αk + η2

t
η

µ0j·B
B2

eq

1 + ηt

η
B

2

B2
eq
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Microscopic feedback

Catastrophic α-quenching (Rm � 1!) in case of steady state and
homogeneous B:

α =
αk

1 + Rm
B

2

B2
eq

If j · B 6= 0 (dynamo generated field) and ηt unquenched:

α ≈ ηt µ0
j · B
B

2
∼ ηt

L
∼ ηt

lc

lc
L
∼ αk

lc
L

In general α-quenching dynamic process: linked to time
evolution of helicity

Boundary conditions matter: Loss of small scale current
helicity can alleviate catastrophic quenching

Catastrophic α-quenching turns large scale dynamo into slow
dynamo
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3D simulations

Why not just solving the full system to account for all non-linear
effects?

Most systems have Re � Rm � 1, requiring high resolution

Large scale dynamos evolve on time scales τc � t � τη,
requiring long runs compared to convective turn over

3D simulations successful for geodynamo

Rm ∼ 300: all relevant magnetic scales resolvable
Incompressible system

Solar dynamo: Ingredients can be simulated

Compressible system: density changes by 106 through
convection zone
Boundary layer effects: Tachocline, difficult to simulate
(strongly subadiabatic stratification, large time scales)
How much resolution required? (CZ about ∼ 109 Mm3, 1 Mm
resolution ∼ 10003 numerical problem)
Small scale dynamos can be simulated (for Pm ∼ 1)
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Where did the “first” magnetic field come from?

Meanfield induction equation linear in B: possible solution.

∂B

∂t
= ∇×

[
αB + (v + γ)× B− (η + ηt) ∇× B

]
B = 0 is always a valid solution!
Generalized Ohm’s law with electron pressure term:

E = −v × B +
1

σ
j− 1

%e
∇pe .

leads to induction equation with inhomogeneous source term:

∂B

∂t
= ∇× (v × B− η ∇× B) +

1

%2
e

∇%e ×∇pe .
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Where did the “first” magnetic field come from?

Early universe:

Ionization fronts from point sources (quasars) driven through
an inhomogeneous medium: 1/%2

e∇%e ×∇pe can lead to
about 10−23G

Collapse of intergalactic medium to form galaxies leads to
1020 G

Galactic dynamo (growth rate ∼ 3Gy−1) leads to 10−6 G
after 10 Gy (today)
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Summarizing remarks

Destruction of magnetic field:

Turbulent diffusivity: cascade of magnetic energy from large
scale to dissipation scale (advection+reconnection)

Enhances dissipation of large field by a factor Rm

Creation of magnetic field:

Small scale dynamo (non-helical)

Amplification of field at and below energy carrying scale of
turbulence
Stretch-twist-fold-(reconnect)
Produces non-helical field and does not require helical motions
Controversy: behavior for Pm � 1

Large scale dynamo (helical)

Amplification of field on scales larger than scale of turbulence
Produces helical field and does require helical motions
Requires rotation + additional symmetry direction
(controversial Ω× J effect does not require helical motions)
Controversy: catastrophic vs. non-catastrophic quenching
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