ASTR 7500: Solar \& Stellar Magnetism
Hale CGEG Solar \& Space Physics

Matthias Rempel, Prof. Juri Toomre + HAO/NSO colleagues Lecture 10 Thurs 21 Feb 2013
zeus.colorado.edu/astr7500-toomre

Mathematical definition of dynamo

S bounded volume with the surface ∂S, B maintained by currents contained within $S, B \sim r^{-3}$ asymptotically,

$$
\begin{array}{rlrl}
\frac{\partial \mathbf{B}}{\partial t} & =\boldsymbol{\nabla} \times(\mathbf{v} \times \mathbf{B}-\eta \boldsymbol{\nabla} \times \mathbf{B}) & \text { in } S \\
\boldsymbol{\nabla} \times \mathbf{B} & =0 & & \text { outside } S \\
{[\mathbf{B}]} & =0 & & \text { across } \partial S \\
\boldsymbol{\nabla} \cdot \mathbf{B} & =0 &
\end{array}
$$

$\mathbf{v}=0$ outside $S, \mathbf{n} \cdot \mathbf{v}=0$ on ∂S and

$$
E_{\text {kin }}=\int_{S} \frac{1}{2} \varrho \mathbf{v}^{2} d V \leq E_{\max } \quad \forall t
$$

\mathbf{v} is a dynamo if an initial condition $\mathbf{B}=\mathbf{B}_{0}$ exists so that

$$
E_{\mathrm{mag}}=\int_{-\infty}^{\infty} \frac{1}{2 \mu_{0}} \mathbf{B}^{2} d V \geq E_{\min } \quad \forall t
$$

Large scale/small scale dynamos

- Amplification through field line stretching
- Twist-fold required to repack field into original volume
- Twist-fold requires 3D - there are no dynamos is 2D!
- Magnetic diffusivity allows for change of topology

Dynamos: Motivation

- For $\mathbf{v}=0$ magnetic field decays on timescale $\tau_{d} \sim L^{2} / \eta$
- Earth and other planets:
- Evidence for magnetic field on earth for $3.5 \cdot 10^{9}$ years while $\tau_{d} \sim 10^{4}$ years
- Permanent rock magnetism not possible since $T>T_{\text {Curie }}$ and field highly variable \longrightarrow field must be maintained by active process
- Sun and other stars:
- Evidence for solar magnetic field for ~ 300000 years $\left({ }^{10} \mathrm{Be}\right)$
- Most solar-like stars show magnetic activity independent of age
- Indirect evidence for stellar magnetic fields over life time of stars
- But $\tau_{d} \sim 10^{9}$ years!
- Primordial field could have survived in radiative interior of sun, but convection zone has much shorter diffusion time scale ~ 10 years (turbulent diffusivity)

Large scale/small scale dynamos

Decompose the magnetic field into large scale part and small scale part (energy carrying scale of turbulence) $\mathbf{B}=\overline{\mathbf{B}}+\mathbf{B}^{\prime}$:

$$
E_{\mathrm{mag}}=\int \frac{1}{2 \mu_{0}} \overline{\mathbf{B}}^{2} d V+\int \frac{1}{2 \mu_{0}} \overline{\mathbf{B}^{\prime 2}} d V
$$

- Small scale dynamo: $\overline{\mathbf{B}}^{2} \ll \overline{\mathbf{B}^{\prime 2}}$
- Large scale dynamo: $\overline{\mathbf{B}}^{2} \geq \overline{\mathbf{B}^{\prime 2}}$

Almost all turbulent (chaotic) velocity fields are small scale dynamos for sufficiently large R_{m}, large scale dynamos require additional large scale symmetries (see second half of this lecture)

Slow/fast dynamos

Influence of magnetic diffusivity on growth rate

- Fast dynamo: growth rate independent of R_{m} (stretch-twist-fold mechanism)
- Slow dynamo: growth rate limited by resistivity (stretch-reconnect-repack)
- Fast dynamos relevant for most astrophysical objects since $R_{m} \gg 1$
- Dynamos including (resistive) reconnection steps can be fast provided the reconnection is fast

Differential rotation and meridional flow

Induction effects of axisymmetric flows on axisymmetric field:

$$
\begin{aligned}
\mathbf{B} & =B \mathbf{e}_{\boldsymbol{\Phi}}+\boldsymbol{\nabla} \times\left(A \mathbf{e}_{\boldsymbol{\Phi}}\right) \\
\mathbf{v} & =v_{r} \mathbf{e}_{\mathbf{r}}+v_{\theta} \mathbf{e}_{\boldsymbol{\theta}}+\Omega r \sin \theta \mathbf{e}_{\boldsymbol{\Phi}}
\end{aligned}
$$

Differential rotation most dominant shear flow in stellar convection zones:

Meridional flow by-product of DR, observed as poleward surface flow in case of the sun

Differential rotation and meridional flow

- Weak poloidal seed field can lead to significant field amplification
- No source term for poloidal field
- Decay of poloidal field on resistive time scale
- Ultimate decay of toroidal field
- Not a dynamo!
- What is needed?
- Source for poloidal field

Large scale dynamo theory

Some history:

- 1919 Sir Joeseph Larmor: Solar magnetic field maintained by motions of conducting fluid?
- 1937 Cowling's anti-dynamo theorem and many others
- 1955 Parker: decomposition of field in axisymmetric and non-axisymmetric parts, average over induction effects of non-axisymmetric field
- 1964 Braginskii, Steenbeck, Krause: Mathematical frame work of mean field theory developed
- last 2 decades 3D dynamo simulations

Differential rotation and meridional flow

Spherical geometry:

$$
\begin{aligned}
\frac{\partial B}{\partial t}+ & \frac{1}{r}\left(\frac{\partial}{\partial r}\left(r v_{r} B\right)+\frac{\partial}{\partial \theta}\left(v_{\theta} B\right)\right)= \\
& r \sin \mathbf{B}_{p} \cdot \nabla \Omega+\eta\left(\Delta-\frac{1}{(r \sin \theta)^{2}}\right) B \\
\frac{\partial A}{\partial t}+ & \frac{1}{r \sin \theta} \mathbf{v}_{p} \cdot \boldsymbol{\nabla}(r \sin \theta A)=\eta\left(\Delta-\frac{1}{(r \sin \theta)^{2}}\right) A
\end{aligned}
$$

- Meridional flow: Independent advection of poloidal and toroidal field
- Differential rotation: Source for toroidal field (if poloidal field not zero)
- Diffusion: Sink for poloidal and toroidal field
- No term capable of maintaining poloidal field against Ohmic decay!

Cowling's anti-dynamo theorem

A stationary axisymmetric magnetic field with currents limited to a finite volume in space cannot be maintained by a velocity field with finite amplitude.

Ohm's law of the form $\mathbf{j}=\sigma \mathbf{E}$ only decaying solutions, focus here on $\mathbf{j}=\sigma(\mathbf{v} \times \mathbf{B})$.
On O-type neutral line \mathbf{B}_{p} is zero, but $\mu_{0} \mathbf{j}_{t}=\boldsymbol{\nabla} \times \mathbf{B}_{p}$ has finite value, but cannot be maintained by $(\mathbf{v} \times \mathbf{B})_{t}=\left(\mathbf{v}_{p} \times \mathbf{B}_{p}\right)$.

Reynolds rules

We need to define an averaging procedure to define the mean and the fluctuating field.
For any function f and g decomposed as $f=\bar{f}+f^{\prime}$ and $g=\bar{g}+g^{\prime}$ we require that the Reynolds rules apply

$$
\begin{aligned}
\overline{\bar{f}} & =\bar{f} \longrightarrow \overline{f^{\prime}}=0 \\
\overline{f+g} & =\bar{f}+\bar{g} \\
\overline{f \bar{g}} & =\bar{f} \bar{g} \longrightarrow \overline{f^{\prime} \bar{g}}=0 \\
\overline{\partial f / \partial x_{i}} & =\partial \bar{f} / \partial x_{i} \\
\overline{\partial f / \partial t} & =\partial \bar{f} / \partial t
\end{aligned}
$$

Examples:

- Longitudinal average (mean = axisymmetric component)
- Ensemble average (mean $=$ average over several realizations of chaotic system)

Meanfield induction equation

Average of induction equation:

$$
\frac{\partial \overline{\mathbf{B}}}{\partial t}=\boldsymbol{\nabla} \times\left(\overline{\mathbf{v}^{\prime} \times \mathbf{B}^{\prime}}+\overline{\mathbf{v}} \times \overline{\mathbf{B}}-\eta \boldsymbol{\nabla} \times \overline{\mathbf{B}}\right)
$$

New term resulting from small scale effects:

$$
\overline{\mathcal{E}}=\overline{\mathbf{v}^{\prime} \times \mathbf{B}^{\prime}}
$$

Fluctuating part of induction equation:

$$
\left(\frac{\partial}{\partial t}-\eta \Delta\right) \mathbf{B}^{\prime}-\boldsymbol{\nabla} \times\left(\overline{\mathbf{v}} \times \mathbf{B}^{\prime}\right)=\nabla \times\left(\mathbf{v}^{\prime} \times \overline{\mathbf{B}}+\mathbf{v}^{\prime} \times \mathbf{B}^{\prime}-\overline{\mathbf{v}^{\prime} \times \mathbf{B}^{\prime}}\right)
$$

Kinematic approach: \mathbf{v}^{\prime} assumed to be given

- Solve for \mathbf{B}^{\prime}, compute $\overline{\mathbf{v}^{\prime} \times \mathbf{B}^{\prime}}$ and solve for $\overline{\mathbf{B}}$
- Term $\mathbf{v}^{\prime} \times \mathbf{B}^{\prime}-\overline{\mathbf{v}^{\prime} \times \mathbf{B}^{\prime}}$ leading to higher order correlations (closure problem)

Symmetry constraints

Decomposing $a_{i j}$ and $\partial \bar{B}_{j} / \partial x_{k}$ into symmetric and antisymmetric components:

$$
\begin{aligned}
a_{i j} & =\underbrace{\frac{1}{2}\left(a_{i j}+a_{j i}\right)}_{\alpha_{i j}}+\underbrace{\frac{1}{2}\left(a_{i j}-a_{j i}\right)}_{-\varepsilon_{j i k} \gamma_{k}} \\
\frac{\partial \bar{B}_{j}}{\partial x_{k}} & =\frac{1}{2}\left(\frac{\partial \bar{B}_{j}}{\partial x_{k}}+\frac{\partial \bar{B}_{k}}{\partial x_{j}}\right)+\underbrace{\frac{1}{2}\left(\frac{\partial \bar{B}_{j}}{\partial x_{k}}-\frac{\partial \bar{B}_{k}}{\partial x_{j}}\right)}_{-\frac{1}{2} \varepsilon_{j k l}(\nabla \times \overline{\mathbf{B}})_{l}}
\end{aligned}
$$

Leads to:

$$
\overline{\mathcal{E}}_{i}=\alpha_{i j} \bar{B}_{j}+\varepsilon_{i k j} \gamma_{k} \bar{B}_{j}-\underbrace{\frac{1}{2} b_{i j k} \varepsilon_{j k l}}_{\beta_{i l}-\varepsilon_{i m} \delta_{m}}(\boldsymbol{\nabla} \times \overline{\mathbf{B}})_{\iota}+\ldots
$$

Mean field induction equation

Induction equation for $\overline{\mathbf{B}}$:
$\frac{\partial \overline{\mathbf{B}}}{\partial t}=\boldsymbol{\nabla} \times[\boldsymbol{\alpha} \overline{\mathbf{B}}+(\overline{\mathbf{v}}+\boldsymbol{\gamma}) \times \overline{\mathbf{B}}-(\eta+\boldsymbol{\beta}) \boldsymbol{\nabla} \times \overline{\mathbf{B}}-\boldsymbol{\delta} \times(\boldsymbol{\nabla} \times \overline{\mathbf{B}})]$
Interpretation on first sight:

- $\boldsymbol{\alpha}$: new effect
- γ : acts like advection (turbulent advection effect)
- $\boldsymbol{\beta}$: acts like diffusion (turbulent diffusivity)
- δ : special anisotropy of diffusion tensor

Mean field expansion of turbulent induction effects

Exact expressions for $\overline{\mathcal{E}}$ exist only under strong simplifying assumptions (see homework assignment).
In general $\overline{\mathcal{E}}$ is a linear functional of $\overline{\mathbf{B}}$:

$$
\overline{\mathcal{E}}_{i}(\mathbf{x}, t)=\int_{-\infty}^{\infty} d^{3} x^{\prime} \int_{-\infty}^{t} d t^{\prime} \mathcal{K}_{i j}\left(\mathbf{x}, t, \mathbf{x}^{\prime}, t^{\prime}\right) \bar{B}_{j}\left(\mathbf{x}^{\prime}, t^{\prime}\right)
$$

Can be simplified if a sufficient scale separation is present:

- $I_{c} \ll L$
- $\tau_{c} \ll \tau_{L}$

Leading terms of expansion:

$$
\overline{\mathcal{E}}_{i}=a_{i j} \bar{B}_{j}+b_{i j k} \frac{\partial \bar{B}_{j}}{\partial x_{k}}
$$

In stellar convection zones scale separation also only marginally justified (continuous turbulence spectrum)!

Symmetry constraints

Overall result:

$$
\overline{\mathcal{E}}=\alpha \overline{\mathbf{B}}+\boldsymbol{\gamma} \times \overline{\mathbf{B}}-\boldsymbol{\beta} \boldsymbol{\nabla} \times \overline{\mathbf{B}}-\boldsymbol{\delta} \times(\nabla \times \overline{\mathbf{B}})+\ldots
$$

With:

$$
\begin{array}{llrl}
\alpha_{i j} & =\frac{1}{2}\left(a_{i j}+a_{j i}\right), & \gamma_{i}=-\frac{1}{2} \varepsilon_{i j k} a_{j k} \\
\beta_{i j} & =\frac{1}{4}\left(\varepsilon_{i k l} b_{j k l}+\varepsilon_{j k l} b_{i k l}\right), & \delta_{i}=\frac{1}{4}\left(b_{j j i}-b_{j i j}\right)
\end{array}
$$

Symmetry constraints

$\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}$ and δ depend on large scale symmetries of the system defining the symmetry properties of the turbulence (e.g. rotation and stratification). Additional to that the expansion

$$
\overline{\mathcal{E}}=\alpha \overline{\mathbf{B}}+\gamma \times \overline{\mathbf{B}}-\boldsymbol{\beta} \boldsymbol{\nabla} \times \overline{\mathbf{B}}-\boldsymbol{\delta} \times \boldsymbol{\nabla} \times \overline{\mathbf{B}}+\ldots
$$

is a relation between polar and axial vectors:

- $\overline{\mathcal{E}}$: polar vector, independent from handedness of coordinate system
- B: axial vector, involves handedness of coordinate system in definition (curl operator, cross product)
Handedness of coordinate system pure convention (contains no physics), consistency requires:
- $\alpha, \boldsymbol{\delta}$: pseudo tensor
- $\boldsymbol{\beta}, \gamma$: true tensors

Symmetry constraints

Turbulence with rotation and stratification

- true tensors: $\delta_{i j}, g_{i}, g_{i} g_{j}, \Omega_{i} \Omega_{j}, \Omega_{i} \varepsilon_{i j k}$
- pseudo tensors: $\varepsilon_{i j k}, \Omega_{i}, \Omega_{i} g_{j}, g_{i} \varepsilon_{i j k}$

Symmetry constraints allow only certain combinations:

$$
\begin{aligned}
\alpha_{i j} & =\alpha_{0}(\mathbf{g} \cdot \boldsymbol{\Omega}) \delta_{i j}+\alpha_{1}\left(g_{i} \Omega_{j}+g_{j} \Omega_{i}\right), & & \gamma_{i}=\gamma_{0} g_{i}+\gamma_{1} \varepsilon_{i j k} g_{j} \Omega_{k} \\
\beta_{i j} & =\beta_{0} \delta_{i j}+\beta_{1} g_{i} g_{j}+\beta_{2} \Omega_{i} \Omega_{j}, & & \delta_{i}=\delta_{0} \Omega_{i}
\end{aligned}
$$

The scalars $\alpha_{0} \ldots \delta_{0}$ depend on quantities of the turbulence such as rms velocity and correlation times scale.

- isotropic turbulence: only $\boldsymbol{\beta}$
- + stratification: $\boldsymbol{\beta}+\boldsymbol{\gamma}$
$\rho+$ rotation: $\boldsymbol{\beta}+\boldsymbol{\delta}$
- + stratification + rotation: $\boldsymbol{\alpha}$ can exist

Simplified expressions

Assuming $\left|\mathbf{B}^{\prime}\right| \ll|\overline{\mathbf{B}}|$ in derivation + additional simplification for (quasi) isotropic, non-mirror symmetric, (weakly) inhomogeneous turbulence (see homework assignment):

$$
\overline{v_{i}^{\prime} v_{j}^{\prime}} \sim \delta_{i j}, \alpha_{i j}=\alpha \delta_{i j}, \beta_{i j}=\eta_{t} \delta_{i j}
$$

Leads to:

$$
\frac{\partial \overline{\mathbf{B}}}{\partial t}=\boldsymbol{\nabla} \times\left[\alpha \overline{\mathbf{B}}+(\overline{\mathbf{v}}+\gamma) \times \overline{\mathbf{B}}-\left(\eta+\eta_{t}\right) \boldsymbol{\nabla} \times \overline{\mathbf{B}}\right]
$$

with the scalar quantities

$$
\alpha=-\frac{1}{3} \tau_{c} \overline{\mathbf{v}^{\prime} \cdot\left(\boldsymbol{\nabla} \times \mathbf{v}^{\prime}\right)}, \quad \eta_{t}=\frac{1}{3} \tau_{c} \overline{\mathbf{v}^{\prime 2}}
$$

and vector

$$
\gamma=-\frac{1}{6} \tau_{c} \nabla \overline{\nabla \mathbf{v}^{\prime 2}}=-\frac{1}{2} \nabla \eta_{t}
$$

Expressions are independent of η (in this approximation), indicating fast dynamo action!

