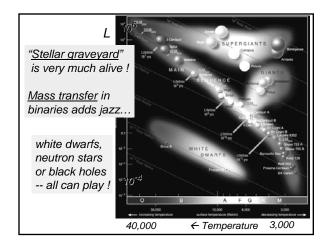
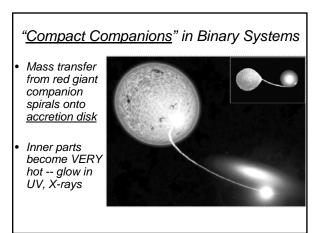


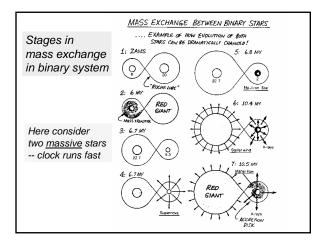
zeus.colorado.edu/astr1120-toomre

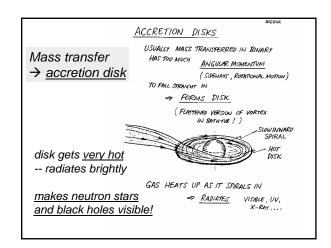
More <u>Truly Bizarre</u> Events

- White dwarf supernovae from mass transfer in binary system, but also repeated novae
- Hot accretion disks formed around object (white dwarf, neutron star, black hole) on receiving end of mass transfer
- Why more pulsars than supernova remnants (SNR)
- *Black holes,* their general properties, and their "care and feeding"
- Second Mid-term Exam this Friday, review session Wed 7pm, *Review Set 2* available
- Homework Set 6 due today

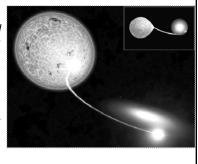

Review – what is left behind?

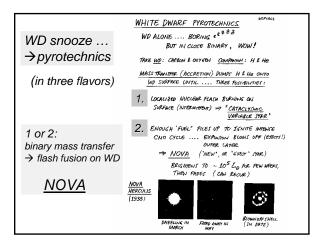

- After a <u>massive-star</u> supernova explosion, the remains of the stellar core ______.
- A. will always be a neutron star
- B. may be either neutron star or black hole

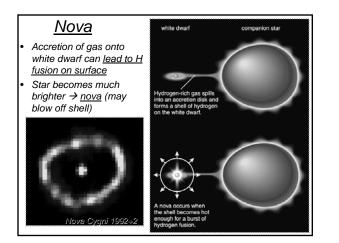

В.

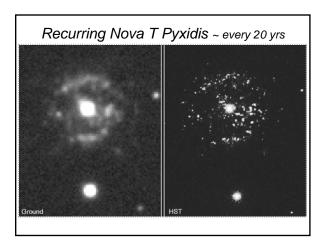

- C. will always be a black hole
- *D.* may be either a white dwarf, neutron star, or black hole

Final fate of	FINAL FATE OF MASSIVE STARS Rather Uncertain in petails that Beblip on Mass Loss by streads winas
massive stars	INFLUENCED BY { INITIAL MASS M } IRON CORE MASS M _{CORE} }
CURRENT THINKING (THEORY/COMPUTER MODELLING)	
	1. IF HEAVY WEIGHT $M \lesssim (20-30) M_0$:
	EVOLUTION YIELDS 1.4 Mg < MCORE < (2-3) Mg
	⇒ CORE COLLAPSE &. CORE BOUNCE
→ Neutron s	star Supernova (Type II)
=> NEUTRON STAR_	
	2. IF TRULY MASSIVE M ≥ (20-30) Mo :
	THEN PROBMELY GET MCORE > 3 MO
→ Black hol	
=> BLACK HOLE	

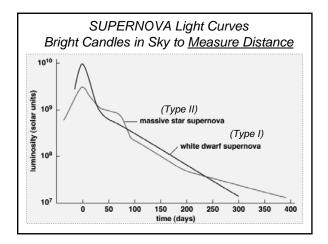


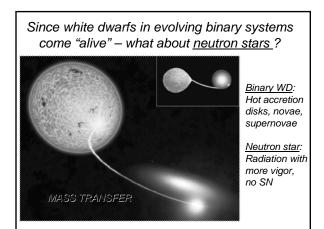


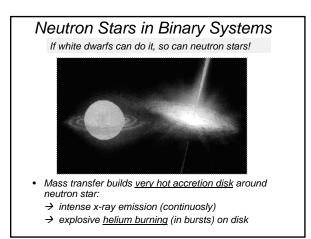


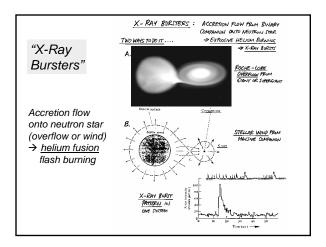

<u>White Dwarfs</u> in Binary Systems Again, mass transfer from red giant companion spirals onto an accretion disk

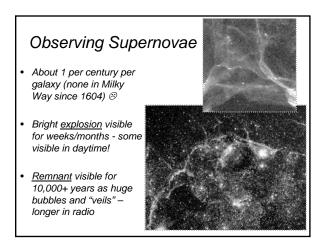
But too much mass can take white dwarf <u>over</u> <u>the edge!</u>

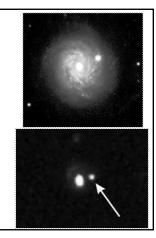


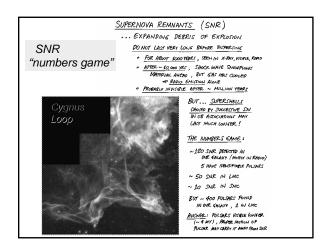


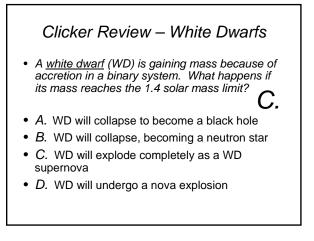






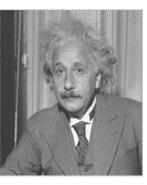





SUPERNOVAE in Other Galaxies

- Bright enough to be seen as <u>sudden, bright point</u> in other galaxies
- Many astronomers monitor nearby galaxies nightly to catch them
- <u>1 per 100 years per</u> <u>galaxy</u> means that if you monitor 100 galaxies, see ~ 1 SN per year)

COMPACT OBJECTS " Review of "COMPACT WHITE DWARFS OBJECTS" all charming DESERVED : INDIVIDUAL , AND IN BINARIES NOVAE , CATACLYSMIC VAPIABLES but bizarre ! NEUTRON STARS RADIUS: ~ 10 Km (BOULDER - NAWOT) MASS: < 2-3 Mo DENSITY: 1015 × WATER (NUCLEAR DENSITY!) OBSERVED: PULSARS, X-RAY BINARIES BLACK HOLES RADIUS: "HORIZON" DEPENDS ON MASS MASS : ANY DENSAY: DEPENDS ON MASS OBSERVED: ? SEVERAL CANDIDATES



Reading Needed

- Complete detailed reading of 18.4 Black Holes
- Overview read S3 Spacetime and Gravity, and more carefully S3.4 New View of Gravity

Black Holes - sort of courtesy of Albert

- <u>Einstein's (1911)</u> <u>General Theory of</u> <u>Relativity</u>: gravity is really the warping of spacetime around an object with much mass
- Light travels in "straight lines" – and its bending comes from spacetime being curved by gravity

