This Week

- Observing Session: Tonight Mar 10 (8:00 pm)

- **MIDTERM**: Thurs Mar 13 (regular class time, 9:30 am)

- Review Session: Wed Mar 12 (5:00 - 7:00 pm)
Today’s Schedule

- Past / Current Homework Questions?
- White Dwarfs and Degeneracy Pressure
- Supernovae and Nuclear Reactions
“Basic” Quantum Mechanics

- Heisenberg Uncertainty Principle
- Pauli Exclusion Principle
- Planck’s Constant:
 \[h \approx 10^{-34} \text{ J s or } \hbar \equiv h/(2\pi) \text{ J s} \]
Heisenberg Uncertainty Principle

\[\Delta x \Delta p \geq \frac{\hbar}{2} \]

\[\Delta t \Delta E \geq \frac{\hbar}{2} \]

- \(p \) is momentum and \(E \) is energy

Werner Heisenberg
Pauli Exclusion Principle

- No two fermions (protons, electrons, neutrons) can occupy the same quantum state

- Fermions have half-integer spin and Bosons (photons) have integer spin

Wolfgang Pauli
Degeneracy Pressure

- White Dwarf: \sim size of Earth, \sim mass of Sun

- Supported by Electron Degeneracy Pressure

$$P_{\text{NR}} = \frac{\hbar^2}{m_e} \left(\frac{Z}{A} \right)^{5/3} \left(\frac{\rho}{m_p} \right)^{5/3}$$
How did you get that result?

Newton: \(F = ma \)
\(F = \) change in linear momentum per unit time
\(= \frac{\Delta p}{\Delta t} \)
\(p = \) linear momentum
\(= m \times v \)

Before collision:
\(-p_x, p_y, p_z\)

After collision:
\(p_x, p_y, p_z\)

\(\Delta p = 2p_x \)
\(\Delta t = 2 \left(\frac{\Delta x}{v_x} \right) \)
Is there a relationship between Mass and Radius?

\[P_{\text{HSE}} = P_{\text{Deg}} \Rightarrow R \propto M^{-1/3} \]
Is there a relationship between Mass and Radius?

Yes! How do we find it?
Is there a relationship between Mass and Radius?

Yes! How do we find it?

Use Hydrostatic Equation (who remembers what that even means?)
Is there a relationship between Mass and Radius?

Yes! How do we find it?

Use Hydrostatic Equation (who remembers what that even means?)

Set $P_{\text{HSE}} = P_{\text{Deg}} \Rightarrow R \propto M^{-1/3}$
We used $P = nvp$, what happens when $v \approx c$?
We used $P = nvp$, what happens when $v \approx c$?

Simply replace $v \rightarrow c$

$$P_R = \hbar c \left(\frac{Z}{A} \right)^{4/3} \left(\frac{\rho}{m_p} \right)^{4/3}$$
Degeneracy Pressure with Numbers

For $Z/A = 1$ and $\rho = 1 \text{ g/cm}^{-3}$

Non-Relativistic:

$$P_{\text{NR}} = 9.9 \times 10^{12} \text{ dyn cm}^{-2}$$

Relativistic:

$$P_{\text{R}} = 1.2 \times 10^{15} \text{ dyn cm}^{-2}$$
Unit conversions are good for the soul, so ...

Convert dyn cm$^{-2}$ (cgs) to SI/MKS unit of pressure: Pascal

Remember $P = F/A$ and a dyn is cgs unit of force
Unit conversions are good for the soul, so ...

Convert dyn cm$^{-2}$ (cgs) to SI/MKS unit of pressure: Pascal

Remember $P = F/A$ and a dyn is cgs unit of force

$$1 \text{ dyn cm}^{-1} = 0.1 \text{ Pa}$$
Unit conversions are good for the soul, so ...

Convert \(\text{dyn cm}^{-2}\) (cgs) to SI/MKS unit of pressure: Pascal

Remember \(P = \frac{F}{A}\) and a dyn is cgs unit of force

\[
1 \text{ dyn cm}^{-1} = 0.1 \text{ Pa}
\]

\[
1 \text{ dyn cm}^{-2} = \frac{g}{s^2} \frac{1}{cm^2}
\]

\[
\frac{g}{s^2 \text{ cm}} = \frac{10^{-3} \text{ kg}}{s^2 10^{-2} \text{ m}} = 0.1 \frac{\text{ kg}}{s^2 \text{ m}} = 0.1 \frac{\text{ kg m}}{s^2 \text{ m}^2} = 0.1 \text{ Pa}
\]
Classifying Supernovae – It’s Complicated

SUPERNOVAE

- **I**
 - no H lines
 - **Ia**
 - Si lines
 - (Si II, λ=6150 Å)
 - **Ib**
 - He lines
 - (He I, λ=5876 Å)
 - no He lines
 - **Ic**
 - hypernovae

- **II**
 - H lines
 - **II-L**
 - linear
 - **II-P**
 - plateau
 - H recombination
 - **IIpec**
 - peculiar
 - (1987A, III, IV, V)
 - **IIn**
 - narrow emission lines
 - interaction with CSM
 - **IIb**
 - low H

Population II
- THERMONUCLEAR EXPLOSION

Population I
- CORE-COLLAPSE SUPERNOVAE

[Image of the diagram]
Supernova Onion Shell Burning

For a 25 solar mass star:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>H → He</td>
<td>7×10^6 years</td>
</tr>
<tr>
<td>He → C</td>
<td>7×10^5 years</td>
</tr>
<tr>
<td>C → O</td>
<td>600 years</td>
</tr>
<tr>
<td>O → Si</td>
<td>6 months</td>
</tr>
<tr>
<td>Si → Fe</td>
<td>1 day</td>
</tr>
<tr>
<td>Core Collapse</td>
<td>1/4 second</td>
</tr>
</tbody>
</table>
Why Stop at Iron ($Z = 26$)?

![Diagram showing the relationship between average binding energy per nucleon and number of nucleons in a nucleus. The diagram highlights the nuclear fusion and fission processes.]
Naturally Occurring Elements with $Z > 26$ Exist!

- For high Z elements it is hard to get another charged particle close due to the high Coulomb potential barrier.

- Not for neutrons: $\frac{A}{Z}X + n \rightarrow \frac{A+1}{Z}X + \gamma$

- Results in more massive nuclei that are stable or unstable against beta-decay: $\frac{A+1}{Z}X \rightarrow \frac{A+1}{Z+1}X + ?$
For high Z elements it is hard to get another charged particle close due to the high Coulomb potential barrier.

Not for neutrons: $\frac{A}{Z}X + n \rightarrow \frac{A+1}{Z}X + \gamma$

Results in more massive nuclei that are stable or unstable against beta-decay: $\frac{A+1}{Z}X \rightarrow \frac{A+1}{Z+1}X + ?$

$\frac{A+1}{Z}X \rightarrow \frac{A+1}{Z+1}X + e^- + \bar{\nu}_e + \gamma$
Neutron Processes

If beta-decay half-life is short compared to timescale for neutron capture

slow process or s-process reactions
tends to produce stable nuclei

If beta-decay half-life is long compared to timescale for neutron capture

rapid process or r-process reactions
tends to produce neutron rich nuclei
Neutron Processes

s-process tend to occur in normal phases of stellar evolution

r-process can occur during a supernova

Neither process plays a significant role in energy production

Accounts for abundances of nuclei with $A \gtrsim 60$, $(Z \gtrsim 26)$