Today in Milky Way

- Look at components of galaxy: stars, gas, dust
- Examine the rotation curve of our galaxy, and the unseen mass (dark matter) that it implies
- Look at why spiral patterns are made in the disk of galaxies, including our own
- Examine the Star-Gas-Star Cycles working in our galaxy disk, and its ingredients
 - Interstellar Medium (ISM) – gas and dust, plus super-bubbles blown by multiple supernovae
- Recycling on a grand scale, and building the heavier atoms
- Complete your reading of 19.4 Mysterious Galactic Center

SECOND MID-TERM EXAM

- Grade boundaries, based on 126 points:
 - If $111/126$ (88%) or over, A's [42%]
 - $96/126$ (76%) or over, B's [36%]
 - $74/126$ (60%) or over, C's [22%]
- Also +, plain, and – within these ranges

Go through answer sheet – and talk to us if do not understand our choices. Keep exam + answers for future review (comp final)

Crib Sheet Awards

Psychic Powers Award
 Jennika Greer
Compact Object Award
 Eric McNeil

Now to Our Milky Way Galaxy

Superbubble
NGC 3079
The Milky Way (fuzzy ribbon of light across the sky)

Size of Milky Way
- 100-400 billion stars
- 100,000 light years in diameter, or ~30,000 pc = 30 Kpc (kilo-parsecs)
- Sun is located about 8.5 kpc from center, in the ‘Orion Arm’

If we might see Milky Way from outside

We might prefer to look like this! Prettier?

Composite of M101 – much goes on!

Milky Way Anatomy: Spiral Galaxy
- **Disk**: includes spiral arms -- young, new star formation
- **Bulge & Halo**: older stars, globular clusters
Clicker – Where are we?

- Why was it so difficult to figure out where in the Milky Way are the Sun and Earth located, and if ours is the only "nebula" (galaxy)?
 - A. We are immersed in a soup of stars, gas and dust, so hard to see far
 - B. In a middle of city of stars, hard to figure shape of overall 'metropolitan area'
 - C. Gas and dust can absorb light, making distance estimates uncertain
 - D. All of the above

Disk is very thin!

- Disk is very thin! Artist's edge-on view

Spiral galaxy NGC 891 – nearly edge-on

- Spiral galaxy NGC 891 – nearly edge-on

Pre-Milky Way: early halo + disk

- Pre-Milky Way: early halo + disk

How to build a spiral galaxy

- How to build a spiral galaxy
 (or so we think!)
The Star-Gas-Star Cycle

All spiral galaxies are constantly changing, with

star formation
supernovas and stellar winds

Cycle of star → gas
Th → star

Star Cycle

+ “dark matter”

Inventory of “stuff” making up our galaxy

Stars
Gas
Dust

1. Stars
 - Few hundred billions
 - Mostly Hydrogen
 - Mostly Helium
 - Some heavy elements

2. Gas
 - 10% H2
 - Interstellar medium
 - Very cool gas in patches
 - Hot gas in supernova remnants

3. Dust
 - Very cool gas in patches
 - Hot gas in supernova remnants
 - Very cold black cloud

Many views of our galaxy disk

- 21 cm radio emission from atomic hydrogen gas
- Radio recombination from carbon monoxide clouds molecular clouds
- 10 cm radio waves from hydrogen atoms
- Infrared (2.2 micron) star dust from the remains molten meteorites
- Visible light and infrared stars is scattered and absorbed by dust
- X-rays emission from hot gas in between (galaxies) and X-ray emission from black holes
- 21 cm radio emission from clouds of neutral gas with atomic, ionized in interstellar clouds

Reading clicker – mapping our galaxy

We want to map the structures of very cold gas within the dusty disk of the Milky Way. What wavelengths should we be using, and why?

- A. radio
- B. visible light
- C. x-rays

A. Radio
- Dust obscures our vision of much of the galaxy in visible and UV light.
- X-rays only highlight the hottest and weirdest places
- 21 cm radio waves map normal hydrogen gas -- these pass through dust unaffected

Motion of stars in spiral galaxy

- Halo & bulge: swarming in and out
- Disk: circular + bit up/down

MW disk in radio
Different star motions in disk & halo

1. **Disk Population of Stars (1 Gal & Disk)**
 - **Radius in Highly Circular Orbit (Halo:** **Inner Disk: **“**Globulars**”)

 ![Diagram showing star motions in disk & halo](image)

2. **Familiar Patterns**
 - **Stars & Gas** Embedd in Much Larger Dark Matter Halo
 - **Don’t know what dark matter is yet…** probably not baryonic (usual protons, neutrons, electrons)

Massive dark matter halo for MW

- Stars and gas are embedded in a much larger dark matter halo ??
- Don’t know what dark matter is yet… probably not baryonic (usual protons, neutrons, electrons)

Stars moving in circles: orbital velocity law

\[M_R = R \times V^2 / G \]

- **mass** in the solar system
- **radius** orbital velocity
- **...faster orbit, more mass**

![MW rotation curve](image)

Reality for the Milky Way

- Rotation curve is flat or even rising!
- Most of the mass of the galaxy is outside the solar circle!
- But few stars, little gas there…
- **DARK MATTER**!
 - Probably in large halo -- outweights stars+gas by factor of 3 to 10

![MW rotation curve](image)

Role of dark matter on rotation profile

- Presence revealed by rotation curves (motions of stars in galaxy)
- Dark matter extends beyond visible part of the galaxy -- mass is ~10x stars and gas!
- Most likely subatomic particles, as yet unidentified (weakly interacting massive particles – WIMPs ?)

![Diagram showing role of dark matter on rotation profile](image)

Dark matter halo for galaxies

- Presence revealed by rotation curves (motions of stars in galaxy)
- Dark matter extends beyond visible part of the galaxy -- mass is ~10x stars and gas!
- Most likely subatomic particles, as yet unidentified (weakly interacting massive particles – WIMPs ?)
Discussion Topic

“Cycle of Stars and Gas”
-- Does this continue forever in Milky Way – why or why not? And does it depend on your location within MW?

Why spiral arms?

“Density waves” – stars move in and out of denser regions
More like ripples in a pond than arms of a pinwheel

In dense regions, star formation is more intense, so “arms” are brighter

Push and pull of gravity in disk

Gas/stars are pulled a little forward or backward toward the high density regions

Such clumping helps create a spiral pattern
