Today

- White dwarf supernovae from mass transfer in binary system, but also repeated novae
- Discuss white-dwarf supernovae (binaries)
- Observational properties of such Type Ia supernovae, including being "standard candles"
- Mass transfer also involves neutron stars

- Evening Review tonight 7-9 pm for Second Mid-Term Exam on Mon Mar 15. Reviews sheets still available, so too new HW # 8.
- Overview read S.3 Spacetime & Gravity
- Read Chap 19 Our Galaxy with care
- Planet Finder homework due next Thur Mar 18

“Compact Companions” in Binary Systems

- Mass transfer from red giant companion spirals onto accretion disk
- Inner parts become VERY hot -- glow in UV, X-rays

Mass transfer → accretion disk

With mass transfer, the gas spiral around the massive star heats and radiates brightly

- Makes neutron stars and black holes visible!
White Dwarfs in Binary Systems

- Again, mass transfer from red giant companion spirals onto an accretion disk
- But too much mass can take white dwarf over the edge!

WD snooze ... → pyrotechnics

(in three flavors)

1. Localized accretion flash burning on surface (hydrogen) → "Nova in the making!"
2. Enhanced "fuel" fuel up to ignite surface flash cycle ... explosive dying off (eventually)
 → NOVA ("new", or "vivid" one)
 Recurrence 1 - 20^5 yr or more, then more (can repeat)

NOVA

- Accretion of gas onto white dwarf can lead to H fusion on surface
- Star becomes much brighter → nova (may blow off shell)

NOVA Cygni 1992+2
Recurring Nova T Pyxidis ~ every 20 yrs

White Dwarf SURPRISES...

3. If WD close to 1.4 M_\sun, limit... collapse of WD, explosive fusion burning of "carbon star" – all gone!

Brightest SN: superb beacons for measuring distances

Supernova Light Curves
Bright Candles in Sky to Measure Distance

- Type II – core collapse
- Type Ia – WD
SUPERNOVAE in Other Galaxies

- Bright enough to be seen as sudden, bright point in other galaxies
- Many astronomers monitor nearby galaxies nightly to catch them
- 1 per 100 years per galaxy means that if you monitor 100 galaxies, see ~ 1 SN per year
- If monitor a million galaxies, likely to find 30+ new ones each night!

In Milky Way: Tycho Brahe SNR (1572)

Kepler’s SNR (1604) latest SN in MW

Kepler SNR (1604) Chandra X-ray

“We are made of star stuff”

- Discussion topic
- How has this occurred, what processes in stellar evolution are involved?

White dwarf SN as distance estimators

- “Standard explosion” = fusion of 1.4 solar masses of material
- Nearly the same amount of energy released
Bright enough to be seen halfway across observable universe

Useful for mapping the universe to the largest distances

Supernovae in very distant galaxies

Practical difficulty: White dwarf SN

- Need to catch them within a day or two of the explosion
- About 1 per galaxy per century
- Need to monitor thousands of galaxies to catch a few per year → galaxy clusters are useful

White dwarf supernovae

- Carbon fusion explosion: mass transfer in binary takes white dwarf "over the edge"
- Roughly same amount of energy released (calibrate)

Calibrated

Since white dwarfs in evolving binary systems come "alive" – what about neutron stars?

Neutron Stars in Binary Systems

- Mass transfer builds very hot accretion disk around neutron star:
 - intense x-ray emission (continuously)
 - explosive helium burning (in bursts) on disk

Binary WD:

- Hot accretion disks, novae, supernovae

Neutron star:

- Radiation with more vigor, no SN

MASS TRANSFER
“X-Ray Bursters”
Accretion flow onto neutron star (overflow or wind) → helium fusion flash burning

Clicker: Where have all the white dwarfs gone ..?
• Imagine two star clusters, one 10 billion years old, and one very young. Which is more likely to have a lot of white dwarfs?
 • A. the old one
 • B. the young one
 • C. can’t tell
 • Hint: what mass stars create white dwarfs?

Old globular cluster – lots of white dwarfs
White dwarfs are mostly made by low-mass stars
Their evolution proceeds slowly, so must wait for cluster to age

Old globular clusters have white dwarfs!

Next: read S.3 “Spacetime & Gravity”
Black Holes plus – courtesy of Albert
• Einstein’s (1911) General Theory of Relativity: gravity is really the warping of spacetime around an object with much mass
• Light travels in “straight lines” – and its bending comes from spacetime being curved by gravity