Today

- What can we measure in other stars?
- How do we begin to classify other stars?
- Why O, B, A … such a nutty scheme!
- Why temperature and spectral lines are closely linked in classifying stars O B A M
- Stars on “Hertzsprung–Russell” (or H-R) diagram
- Re-read Chap 15, ‘Surveying the Stars’
- Review tonight for Mid-Term Exam 1 on Mon
- Class meets in Planetarium on Tues: “Journey to the Stars”

Now onward to measuring other stars: Chap 15 – SURVEYING THE STARS

- Measuring stellar luminosities
- Measuring distances
- Measuring temperatures
Often only seeing a point of light

- Stars are so small compared to their distance that we almost never have the resolution to see their sizes and details directly – “point sources”
- We deduce everything by measuring the amount of light (brightness) at different wavelengths (color, spectra)

Most Basic Problem in Astronomy

Star of given APPARENT BRIGHTNESS could be either
- A. very luminous star far away
- B. low luminosity star closer by

Need to know the DISTANCE to the star

Clicker – Dimming with distance?

- If you quadruple (x4) your distance to a light and look again, how much dimmer does it appear?
 - A. one-half as bright as originally
 - B. one-fourth as bright
 - C. one-eighth as bright
 - D. one-sixteenth as bright
 - E. unchanged, since really same light

Stellar Luminosity

- What we measure: APPARENT BRIGHTNESS
 or how bright it appears to us here on Earth
- What we want to know: (absolute) LUMINOSITY
 or how much energy is emitted (joules/sec or watts)
- Need to know DISTANCE to the star
Parallax – to determine distance

- Measure the apparent movement of stars over a year
- Movement is caused by Earth’s movement around the Sun
- Closer objects will move more than farther objects

How Stellar Parallax Works

Movement is caused by Earth’s movement around the Sun. Closer objects will move more than farther objects.

Class self-demo of parallax

- Your nose is the Sun
- Your left eye is the Earth in January
- Your right eye is the Earth in June

Watch the apparent motion of your thumb against a distant reference point (repeat at arm’s length)

Which “move” more -- closer or farther objects?

Best parallax measurer: Hipparcos satellite 1989-1993

- Space measurements not affected by atmosphere
- Measurement made many times until accurate to 0.001 arcsec (~3300 light years)
- 100,000 stars mapped
- (2.5 million to slightly lesser accuracy)

Summary Clicker -- Solar Wind E.

- What are visible effects of the Earth being “bathed” in the wind of solar particles, especially when wind has strong hiccup?
- A. “Auroral lights” visible at night
- B. Electric power grids have problems
- C. Short-wave radio talk interrupted
- D. Satellites (and beepers) may get fried
- E. All of the above
Measuring Surface TEMPERATURE

Shape of spectrum good … but spectral lines much better

Spectra help classify stars

OBAFGKM ?!

• Spectral (color) classification

O = bluest, hottest
G = yellow (Sun)
M = reddest, coolest

A bit of history: Classifying Stars

World War I, Harvard College observatory

Women were hired by Pickering as "calculators" to help with a new survey of the Milky Way

Most had studied astronomy, but were not allowed to work as scientists

Devising the strange temperature code

• Original classification of spectra (1890) was:

A = strongest hydrogen feature
B = less strong hydrogen …C, D, etc.

• Annie Jump Cannon realized that a different sequence made more sense (~1910)

Which absorption (dark) lines are strongest?
Spectral Classification: O B A F G K M

- Which ABSORPTION lines are strongest
- Hottest stars: O B
 - ionized helium only
- Hot stars: A F
 - helium, hydrogen
- Cooler stars: G
 - hydrogen, heavier atoms
- Coolest stars: M
 - molecules, (complex absorption bands)

Stars and their spectral classification

<table>
<thead>
<tr>
<th>Star</th>
<th>Temperature</th>
<th>Surface Temperature</th>
<th>Distance</th>
<th>Luminosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>30,000 K</td>
<td>10,000 K</td>
<td>100 pc</td>
<td>100</td>
</tr>
<tr>
<td>Beta</td>
<td>10,000 K</td>
<td>5,000 K</td>
<td>10 pc</td>
<td>10</td>
</tr>
<tr>
<td>Gamma</td>
<td>5,000 K</td>
<td>3,000 K</td>
<td>1 pc</td>
<td>1</td>
</tr>
</tbody>
</table>

Electric and magnetic fields

Demonstration of TESLA COIL and wild happenings
AIR NEARBY becomes IONIZED forming PLASMA CHANNELS

Brightness / Distance

- Leonardo and Guinevere are two stars that have the same apparent brightness. Leonardo has a larger parallax angle than Guinevere. Which star is more luminous?
 - A. Leonardo
 - B. Guinevere
 - C. Cannot determine from data given

Cecelia figured out WHY stellar spectra are so different: TEMPERATURE

- She showed that SURFACE TEMPERATURE is the big factor (not composition)
- She used the newly-devised SAHA EQUATION, estimating how many electrons remain attached to atoms as temperature is changed (or the level of ionization)

Cecelia Payne-Gaposchkin (Harvard PhD thesis 1925)

O B A F G K M → decreasing temperature
Spectral Classification: O B A F G K M

Hottest stars: ionized helium only
Hot stars: helium, hydrogen
Cooler stars: hydrogen, heavier atoms
Coolest stars: molecules, (complex absorption bands)

Why temperature and spectral lines are linked?

SAHA gives the answer:

- can estimate "population of different energy levels" in H, He...
- and ionization

SAHA predicts spectral line strengths with temperature