Birth of Stars and Planets

Birth of Stars

- Pleiades Star Cluster

and Planets

- Protoplanetary Disks in Orion

Star and Planet Birth

- Look at how stars are formed out of big and cold molecular clouds
- Explore how young stars interact with their environments
- Consider the formation of planets in new solar systems

STAR BIRTH within big cold clouds

- Start with clouds of cold, interstellar gas
- Molecular clouds -- cold enough to form molecules $T=10-30K$
- Often dusty
- Collapses under its own gravity

Recurring theme in forming stars:

Conservation of energy and angular momentum

- 1. Collapse due to gravity increases the temperature. If thermal energy can escape via radiation (glowing gas), collapse continues
- 2. If thermal energy is trapped, or more energy is generated due to fusion, collapse is slowed

Collapse from Cloud to Protostar

- First collapse from very large, cold cloud -- cold enough to contain molecules (molecular clouds)
- The cloud fragments into star-sized masses
- Temperature increases in each fragment as it continues to collapse
Birth of Stars and Planets

Dusty, dark molecular cloud regions

Stellar nurseries start as cold places

Gravity, Spin, Magnetic Fields

Collapse from large, cold cloud

Conservation of Angular Momentum: material spins faster

Disks and Jets form around protostar

Collapsing cloud spins up, forms star, disk and jet

Jets from young stellar objects (YSOs)

HST: actual edge-on disk, jet
Birth of Stars and Planets

3 → 4: As core temperatures reach millions of degrees, fusion begins and stabilizes – star joins main sequence

Galaxy color

- 1 blue O → 100 red M
- Lum O = 10,000 solar luminosities
- Lum M = 0.001 solar luminosities
- What color is the starlight from the star forming spiral arms in our galaxy?
 - A. Blue
 - B. Orange
 - C. Red

Stellar nurseries yield lovely sights

- Hot new blue main sequence stars
- Pink hydrogen gas
- Black sooty dust
- Blue nebulae are reflections of starlight from massive blue stars

The Orion Star Forming Complex

- A. Blue
 - 100 times more M stars, but each is 10,000,000 times fainter than an O star
 - Massive blue stars dominate the light
Birth of Stars and Planets

Infrared view of winter sky (10 - 120 µm)

IRIR

Carbon Monoxide measurements

Orion Molecular Clouds

Orion Nebula

HST 16

Irradiated proto-planetary disks in Orion

HST 10

HST 17

Eagle Nebula: cold dark clouds are eroded by intense starlight

HST icon

Images from:

Hubble Space Telescope
Spitzer Space Telescope
ESO Very Large Telescope

The Cosmic Perspective Textbook
The Birth of Stars and Planets

John Bally
Travis Rector
Davide De Martin

Simulations by:
Matthew Bate, U Exeter (stellar formation)
N-Body Shop, UW (planet formation)

Thanks to
John Bally
Francisco Salas
Kris Spinden
David Stagg
Gwen Eccles

Ben Brown June 2006