Topics for Today

- Twinkle and absorption by our atmosphere
- What light gets through, what does not
- Telescopes in space -- and why
- Radio and x-ray telescopes do it differently
- Read Chap 14 (Our Star .. the Sun)
- Homework Set # 1 due today
- Respond to next discussion Q on CULearn: "What are pros and cons of a lunar observatory?"

Clicker Q: Radio Waves

D. You are listening to a radio station broadcasting at a frequency of 97 Mhz. Which is true?
- A. The radio waves from the station have a wavelength of 97 million meters.
- B. The "radio waves" received by your radio are not light waves, but rather a special kind of sound wave.
- C. The radio station broadcasts its signal with a power of 97 million watts.
- D. The radio waves are causing electrons in your radio's antenna to move up and down 97 million times per second.

D. \(c = \lambda \cdot f \) D. Radios

- You are listening to a radio station broadcasting at a frequency of 97 Mhz. Which is true?
- D. The radio waves are causing electrons in your radio's antenna to move up and down 97 million times per second.

\[
Wavelength = \frac{\text{Speed of light}}{\text{frequency}} = \frac{3.0 \times 10^{10} \text{ cm sec}^{-1}}{9.6 \times 10^7 \text{ sec}^{-1}} = 312 \text{ cm}
\]
Keck 10 m Twins (Segmented Reflectors)

Mauna Kea, HI

Problems in Looking Through Our Atmosphere

- Many wavelengths are **absorbed** (just don’t make it through to surface)
- Turbulence in atmosphere distorts light:
 - stars appear to “twinkle”
 - angular resolution is degraded
- Man-made light is reflected by air particles, yielding bright night sky
 - this is **light pollution**

Light Pollution

90% of Earth’s population cannot see the Milky Way

How many light bulbs does it take to screw up an astronomer?

An immediately curable pollution: simply turn the lights off!

Stop “uplight”, glare: wastes billions of $$ in energy, use “low pressure sodium”

Several famous observatories are now useless...

LA Basin View from Mt. Wilson Observatory, 1908 and 1998

Quest for Good Weather and Seeing

- Mauna Kea, Big Island of Hawaii, 14,000’ elevation, middle of the Pacific
- Dry, high, dark and isolated. Best on the planet?
Two Properties of Any Telescope

1. Resolution
 - smallest angle which can be seen:
 \[\theta = \frac{1.22 \lambda}{2R} \]

2. Light-Collecting Area
 - think of telescope as a "photon bucket"
 - its area: \[A = \pi R^2 \]

(\(\lambda\) is light wavelength, \(R\) is mirror or lens radius)

Nick will discuss RESOLUTION in Monday recitation

Adaptive Optics (AO) – “de-twinkle” stars

- Wavefronts of star light are deformed by atmosphere
- Can distort shape of mirror (very fast) to correct for distortions by atmosphere – hot new technology

Why big aperture telescopes are reflectors

- Can support mirror from back, not just at edges as with lenses (biggest: 1 m lens, 10 m diam mirror)
- Mirror needs only one good optical surface to be ground, not four as with achromatic (2 elem) lens
- Can recoat mirror surface easily with highly reflective aluminum (even silver)
- Lens has to be optically pure and uniform, but mirror can be made of anything that holds its shape (fuzed quartz, zero expans pyroceramics, even beryllium)
Instruments in the Focal Plane

How astronomers use light collected by a telescope:

1. **Imaging**
 - use camera to take pictures (images)
 - photometry → measure amount and color (with filters) of light from object

2. **Spectroscopy**
 - use spectrograph to separate light in detail into its different wavelengths (colors)

3. **Timing**
 - measure how amount of light changes with time (sometimes in a fraction of a second)

Imaging (Digital with CCDs)

- Filters are placed in front of camera to allow only certain colors to be imaged
- Single color images are superimposed to form “true color” images.

Spectroscopy – analyzing the light

- Spectrograph reflects light off a *grating*: finely ruled, smooth surface
- Light (by interference) disperses into colors
- This *spectrum* is recorded by digital CCD detector

How do you point a space telescope in orbit?

1. **Squirt from jets** to change direction (hydrazine)
2. **Torque** by electric currents in big coils while flying through Earth’s magnetic field
3. **Torque** by electric motors spinning up or down “reaction wheels”

Next to Space Astronomy, then Radio Astronomy – then Our Nearest Star (the Sun) Chap 14