ASTR 1040 Accel Intro Astronomy 2: Stars & Galaxies

Prof. Juri Toomre TAs: Ben Brown, Adam Jensen
Lecture 2 Thur 19 Jan 06
zeus.colorado.edu/astr1040-toomre

Topics for Today
• Nature of astronomy as a science
• Light as waves
• Coupling of atoms and light
• Yields "spectral lines" that are fingerprints unique to each atom
• "Kirchoff’s Laws" about emission and absorption features in spectra
• Observatory Night 1 tonight (snowy?)

Reading (overlap with 1030)

How to Succeed in this course, p. xxvi
• Chapter 1, all (Our Place in Universe)
• Review Basic Astronomical terms, p. 4
• Review Chap 2, (Motion of Stars, Seasons)
• Chap 3, sec 3.5 (Nature of Science)
• Review all of Chap 4 (Matter and Energy)
• Read in detail Chap 6 (Light)
• Begin reading Chap 7 (Telescopes) for Tues class
• You can get copy of all slides after class from course website (can be helpful)

Changes to Syllabus

• Adjustment to textbook website: or how you complete Part A in Homework 1
• All have access to masteringastronomy.com without charge using special code (!)
• Establish your login (see handout sheet), join our class ASTR1040TOOMRE

ELEMENTS OF ASTRONOMY

FUNDAMENTAL ASSUMPTIONS
(always being tested)
What does a lecture `cost you’?
(also a clicker tryout)

- A. About $6 each, great buy
- B. About $24 each, kind of expensive
- C. Close to $100 each, ouch!
- D. Nearly $200 each, but what a steal!
- E. Priceless, but hopefully a pleasure

So how can we estimate the cost?

Real cost of lectures -- so use them well

Breaking a problem down to simple elements

\[\lambda \times f = c \]

Speed of light same for all wavelengths

E-M (Light) as Waves

Electromagnetic Spectrum

Quantum Mechanics (energy of photons varies)

\[E = hf \]

Gamma-rays x-rays ultraviolet visible infrared radio
ATOMS
protons, neutrons, electrons
(and quarks ..)
Building blocks for everything

Nucleus and its electron cloud

atomic number = number of protons
atomic mass = number of protons + neutrons

<table>
<thead>
<tr>
<th>Atom</th>
<th>Atomic Number</th>
<th>Atomic Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen (H)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Helium (He)</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Carbon (C)</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>

Isotopes of Carbon
- Carbon-12
- Carbon-13
- Carbon-14

Different isotopes of a given element contain the same number of protons but different numbers of neutrons.

Atoms Involve Big Empty Spaces

Ten million atoms could fit end to end across this dot.

The nucleus is nearly 100,000 times smaller than the atom but contains nearly all of its mass.

Nucleus: Contains positively charged protons (red) and neutral neutrons (gray).

Atom: Electrons are "removed out" in a cloud around the nucleus.

ORBITS OF ELECTRONS
Popping from one orbit to another involves particular PHOTONS
(like DNA prints)

ENERGY LEVELS
(of electrons)
in Hydrogen

Each transition involves photons of specific color
(like fingerprints)

Hydrogen’s Energy Diagram

Emission
Absorption
Discussion Clicker Q

Is Extra-Sensory Perception (ESP), or telepathy, possible ... or is it nutty?

A. Pretty unlikely (No)
B. Sure, I believe it (Yes)
C. Darned if I know (and why ask this in astronomy)
D. How could such “communication” be carried out? (Interested)
E. I prefer to sleep, wake me when its over

Advice: Read Appendix C.3 “Working with Units”