

Today's Topics

- Revisit "active galactic nuclei" (AGNs)
- Just what might be dark matter?
- Cosmology: models of the universe
- Concept of look-back time
- Discovery of <u>cosmic microwave background</u> implies a big-bang beginning
- How <u>dark matter</u> can influence "open" vs "closed" universe

Typical properties of "active galaxies"	PROPERTIES OF "ACTIVE GULAXIES" RADIO GULAXIES, SEVERET GULAXIES, BL LACETAE DESECTS, QUALASS "SOME HAVE MORE THEN OTHERS!" 3. <u>HIGH LUMUNOSITY</u> - MICH MORE LUMUNOSI THAN ANDML GULACES 2. <u>NON-THERMAL EMISSION</u>
synchrotron emission !	 ERCEST RAFINTION IN UV, IR, RAMO, X-RAY IMPUNIS SYNCHROTEON EMISSION FROM BENTIVISTIC ELECTRON'S SAMULING IN MAGAPO FIELDS
	3. <u>SMALL</u> , COMPACT STRE OF INTENSE EMISTION · NUCLEUS VERY BRENT COMPARED TO REAT OF GALAXY
source very small in size	4. RAFIDLY VARYING EMISSION • SOURCE MAY BE A PEW LIGHT HOURS OR DAYS IN SIZE
	5. <u>EXPLOSIVE FEATURES</u> * JETURE EXTENSIONS, FILAMENTS
Most quasars present when	6. <u>GRANTATIONAL DISTURBANCES</u> • VERY HICH INTERNAL VELOCITES DEDUCED REMA Возар SPECTRAL EMISSION LINES • PECUAL OFICIA AMERICANCE
universe was young	7. LARGE REDSHIFTS • IMENING HIGH RECESSIONAL VELOCITIES, VESY LARGE DISTANCES

- matter overall in the universe
- Is DM measurable in our solar system?

Big Puzzle: What is Dark Matter?

- Two possible flavors for Dark Matter:
- Possibility 1. MACHOs
- <u>Massive Compact Halo Objects</u>
- · Very faint, actual things; baryonic matter
- Brown dwarfs, black holes, black dwarfs ... etc.
- · May be floating through the galaxy halo unnoticed

Possibility 2. WIMPs

- Weakly Interacting Massive Particles
- <u>Non-baryonic</u> → subatomic particle (possibly made in Big Bang?)
- <u>Neutrinos</u>? probably not.... they move too fast and cannot be collected into stable galaxy halos
- Slower (unknown) particles: "Cold Dark Matter"
 BIG SEARCHES underway

Knowing <u>distances</u> reveals large-scale galaxy clustering

Find <u>clusters +</u> <u>super-clusters</u> : sheets and voids like `bubble bath'

Lookback time (in expanding universe)

- Say it takes 400 million years for light to get from galaxy <u>A</u> to us in <u>Milky Way</u>
- Yet during travel in <u>spacetime</u>, both <u>A</u> and <u>MW</u> have changed positions by expansion
- Thus "distance" is a fuzzy concept – LOOKBACK TIME is better

Lensing

- **B.** The blue images are a single BACKGROUND galaxy being lensed by the foreground cluster (yellow galaxies)
- The blue galaxy (spiral) is farther from us and thus will have a higher redshift

EARLY DEVELOPMENTS

Predictions of General Relativity Theory (GRT)

- <u>Einstein</u> in 1917 realized GRT (1915) predicted universes in motion, but preferred 'steady state' – added 'cosmological constant' (CC) as repulsive force in space-time to counteract attractive force of gravity
- <u>Willem de Sitter</u> (A, Dutch, 1917) solves GRT equations with no CC and low density of matter : showed universe must expand
- Alexander Friedmann (M, Russian, 1920) solves GRT with no CC but any density of matter : universes can expand forever, or collapse again, depending on mean matter density
- More on ... Predictions of GRT
 <u>Georges Lemaitre</u> (P, Belgian, 1927) rediscovers Friedmann solutions, told Hubble (observing redshifts since 1924) that cosmic expansion suggests more distant galaxies should have greater redshifts (Hubble publishes V = H_o d in 1929)
 <u>Einstein visited Hubble in 1932</u>, said CC "biggest blunder"

