ASTR 1040: Stars \& Galaxies

Prof. Juri Toomre TAs: Peri Johnson, Ryan Horton Lecture 23 Tues 10 Apr 2018 zeus.colorado.edu/astr1040-toomre

Want to explore teaching as a career?
Interested in STEM Outreach?
This Fall 2018 Take..
Step 1: EDUC 2020 (1 credit)
Real experience teaching real kids, in Elementary school Registration priority for math, science, engineering \& open option majors
Scholarships, fellowships and internships available
CU Teach
Science•Engineering•Math
www.colorado.edu/cuteach

Our wide world (universe) of Galaxies

- The rich range of galaxies: spiral, barred spirals, ellipticals, and irregulars
- Hubble's scheme to classify galaxies
- First look at "expanding universe"
- Expanding universe: Hubble's discovery \#2
- Finish overview reading Chap 21 "Galaxy Evolution"
- Next Tues (Apr 17) class meets in Fiske Planetarium
- Next Thur (Apr 19) Mid-Term Exam 3

Lenticulars
(lens-shaped)

- Disks, but less gas and star formation
- Note lack of dust \& pink nebulae

Dwarf ellipticals

- Most common type of galaxy?
- Only know nearby ones (since faint !)

The Big Picture: Universe is filled with network of galaxies in groups and clusters

Large \& Small Magellanic Clouds

Hubble: next showed universe appeared to be expanding!

- Vesto Slipher (1912) reported that most galaxies showed Doppler redshifts
- Edwin Hubble, using new 100"telescope, started busily measuring galaxy redshifts
- Hubble (1929) announced that redshifts of galaxies appear to increase with distance from us
- This was startling: suggests an EXPANDING UNIVERSE!

Clicker Question

From Hubble's original plot, what is the Hubble Constant?
A. $100 \mathrm{~km} / \mathrm{s}$
B. $500 \mathrm{~km} / \mathrm{s}$
C. $500 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$
D. $1000 \mathrm{~km} / \mathrm{s}$

Hubble showed universe appears to be expanding!

Hubble (1929) plot extended only to $2 \mathrm{Mpc}, \mathrm{H}_{0}$ was ~ 500 !

Clicker -- reading on galaxies

- How might you classify this galaxy?
- A. Sa
- B. SBb
- C. E
- D. SO

DISTANCE
 ESTIMATE 1
 Main-Sequence Fitting

- Start with cluster A (upper) whose distance known via parallax
- Compare with other cluster B (lower)
- Get distance to B from brightness difference

Cepheid variable stars

Mapping the universe: need distances to galaxies!

- Identify (and calibrate) properties of galaxies that could serve as "STANDARD CANDLES" -beyond direct measure by trigonometric parallax
- 1. Make some measure of an object which identifies its luminosity (like period in Cepheid)
- 2. Use this luminosity and measure apparent brightness to infer distance to it

Number of Fuzzier Distance Estimators

- A. Apparent brightness of (resolved) red and blue supergiants
- B. Size and brightness of $\boldsymbol{H} \|$ regions (emission nebulae) or starbirth regions
- C. Intercompare distances so deduced for specific galaxies (overlapping rungs in 'distance ladder')

Distance ladder to measure universe

Measuring big distances to galaxies

"STANDARD CANDLES" -- important ones in "distance ladder'

- 0. Parallax
- 1. Main-sequence fitting
- 2. Cepheid variables
- 3. Tully-Fisher relation
- 4. White dwarf supernovae

Brightness ~ Luminosity / (Distance) ${ }^{2}$

