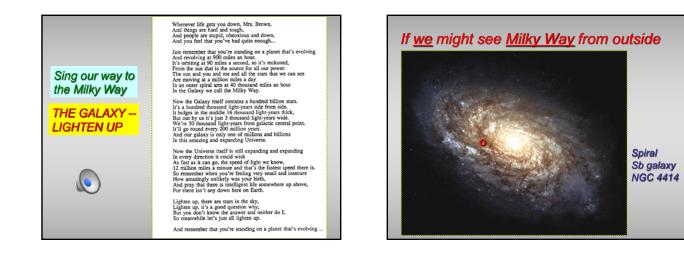


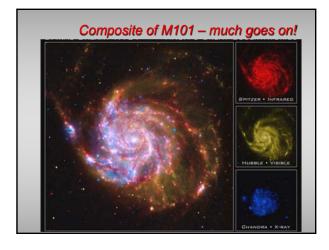
Onward to <u>Galaxies</u>, starting with our own!
Our Milky Way Galaxy in overview, aspects of any spiral galaxy – and a fine SONG
How spiral galaxy may have been <u>assembled</u>
Examine galaxy components: stars, gas, dust
Look at why spiral patterns are made in the disk of galaxies, including our own

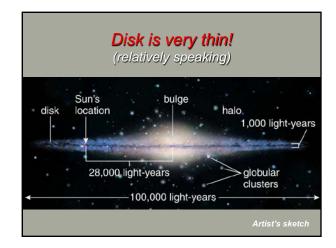

- Homework #9 due today, new HW #10 out requires reading S2 on "special relativity"
- Read Chap 19 "Our Galaxy" in detail, Chap 20 "Galaxies .. Cosmology" in overview

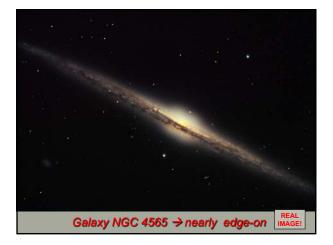
Milky Way Anatomy: Spiral Galaxy

 <u>Disk</u>: includes <u>spiral arms</u> -young, new star formation

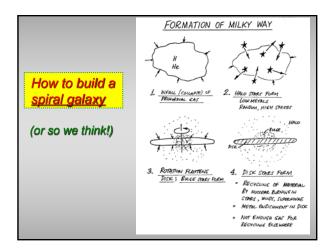
 Bulge & Halo: older stars, globular clusters

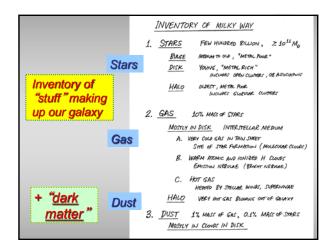





Clicker - Where are we?

- Why was it so difficult to figure out where in the <u>Milky Way</u> are the Sun and Earth located, and if ours is the only "hebula" (galaxy) ?
- A. We are immersed in a soup of stars, gas and dust, so hard to see far
- B. In a middle of city of stars, hard to figure shape of overall `metropolitan area'
- C. Gas and dust can absorb light, making distance estimates uncertain
- D. All of the above

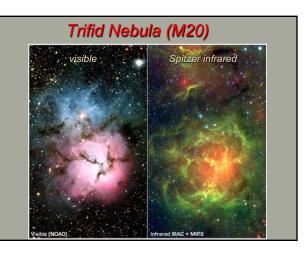




Ingredients of Interstellar Medium (ISM (stuff betweer the stars)	LINES OBTERVID IN RADIO COMBINITIONIE OF H, C, N, O FORM MOLECURES (REMAINY AS SLATIMEST) ** AMALOWIN, WITTER, FORMARSENING METHYL A ETHYL ALCOME, CTANIOCEN, COMBINI MONIXIVIE (CO) CO MARTENIET FAR DEPLIER MATINIS OF CLOURS WITH RADIO OBTERE MATINIS	Very <u>cold</u> gas: star birth
	2. <u>DIFFUSE CLOUDS OF GAS</u> (BUDSONE DUST) <u>HI REGIONS</u> : CLOUDS OF COOL, NEUTRAL HOBOGEN ATOMAS (RESETTON) NEUCOS) 21 Co. PANIO EMISTION <u>HII REGIONS</u> (EMISTION MESULAE): GLOWINS, IONIZED MARCEN JORNOWS (Souch for Their (OL & Astochatower)	<u>Cool</u> gas: neutral H <u>Hot</u> H

More stuff in <u>ISM</u> inventory	INTERSTELLAR. MEDIUM 3. HOT INTERCLOUD GAS > 10% K • HEATED BY SUPENNOVAE, STELLAR WINDS • FILLS HOLO, GALACTIC, WIND ? • HKWLY IDNIZED GAS, NO ANST BUTS X-PARS, YELDS UN EMISTION LIE ONNED VIL (OXNED-UTMORE oF SELECOMMULT) VERY EMERGENC ATOMIC NUCLEI (Particus)	Really hot gas
	5. <u>INTRESTRUGR DUST</u> NOT MUCH BY MASS, BUT	Dust
Now let us let them in turn		

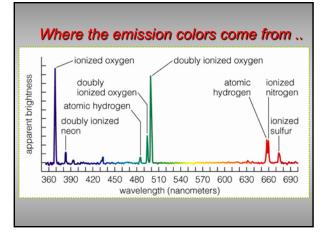
State of Gas	Primary Constituent	Approximate Temperature	Approximate Density (atoms per cm ³)
Hot bubbles	Ionized hydrogen	1,000,000 K	0.01
Warm atomic gas	Atomic hydrogen	10,000 K	1
Cool atomic clouds	Atomic hydrogen	100 K	100
Molecular clouds	Molecular hydrogen	30 K	300
Molecular cloud cores	Molecular hydrogen	60 K	10,000

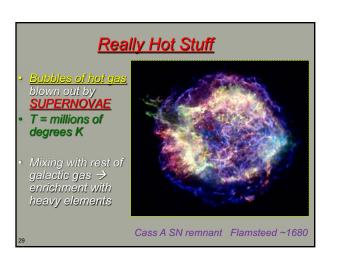


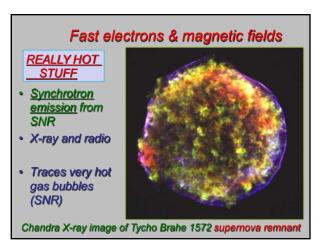


Hot Stuff

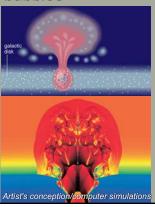
- Ionization nebulae
- Hot (young) stars ionize hydrogen and other elements in the gas
- T~ 10,000 K near hot young stars

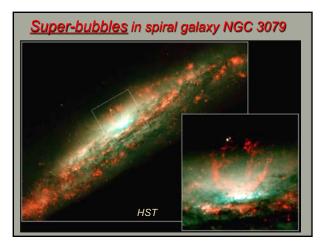






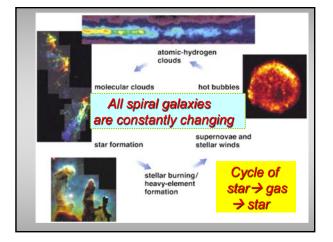
- Emission lines from hydrogen and other ionized elements
- T~ 10,000 K near hot young stars

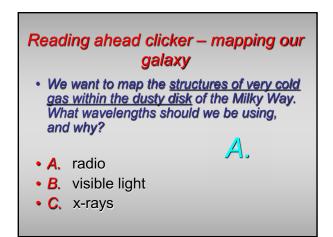




Super-bubbles

- When multiple bubbles join (from a cluster) they can create <u>superbubbles</u>
- If the superbubbles reaches the edge of the disk, it can <u>blast</u> <u>hot gas</u> out of the Galaxy!
 - Some will rain back down and mix into the galaxy



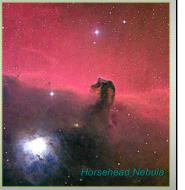


Clicker Poll of Advice

- How do you take notes (or listen) during lectures?
- A. I get most of it by just listening
- B. I write down some notes, then go back to book to look things up
- C. I listen, take some notes, then get copies of lecture slides from course website
- D. I enjoy talking with my buddies, and they tell me later if I missed anything
- E. I try to read the subject in advance, and then listen, taking some notes in class

A. <u>Radio</u>

- Dust <u>obscures</u> our vision of much of the galaxy in visible and UV light.
- X-rays only highlight the hottest and weirdest places
- <u>21 cm radio waves</u> map normal hydrogen gas -- these pass through dust unaffected



MW disk in radio

	INTERSTELLAR DUST MINOR COMPONENT, BUT BIG EFFECTS ! 1. REDDENING OF LIGHT "INTERSTRUME REDDENING	I¢*	
<u>ISM:</u>	PREPERENTIAL SCATTERING OF BLUER PHOTONS		
A little DUST	BY DUST GRAIN DUST GRAIN CORE: CO. H ₂ O, CH ₄ , NH ₉ ?	"Reddens" the light	
goes a long way!	STE OF FORMERON OF MOLECULES! That ~ 20- 40 K		
	2. GENERAL EXTINCTION OF PIMMINS OF UCHT	,	
	Same AREAS APPEAR ORAGUE TO STARLICHT	Absorbs the light	
	3. POLARIZATION OF LIGHT	the light	
	MAGNETIC FIELDS CAN SERVE TO ALIGN DUST GRAINS WHICH MAY BE ELONGATED IN STATE		
	# SELECTIVE MESURTION OF UNIT OF ONE OPTENTIONN		

SEMI-WARM stuff: dust

- <u>DUST:</u> <u>absorbs</u> visible and UV light
- <u>Transparent</u> to long wavelengths (red, IR, radio)
- Emits IR light

