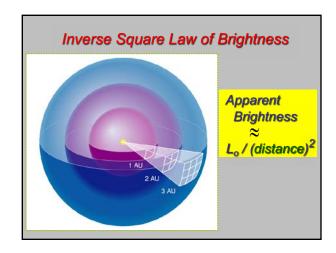
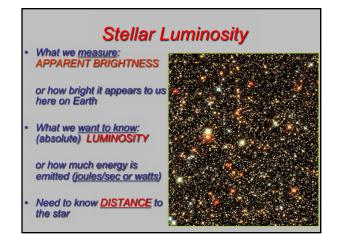


Topics for Today

- · How to classify other stars?
- Vital work by Annie Jump Cannon in devising a sensible "spectral sequence" for stars
- Why temperature and spectral lines are closely linked in classifying stars O B A...M
- Cecilia Payne-Gaposhkin and the "Saha" equation to predict spectral line strengths
- Roadmap to the stars: <u>Hertzsprung-Russell</u> (<u>H-R) diagram</u>

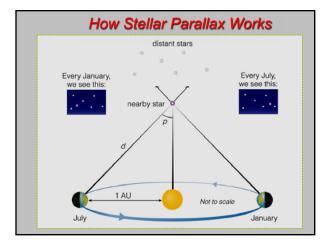
FIRST MID-TERM EXAM

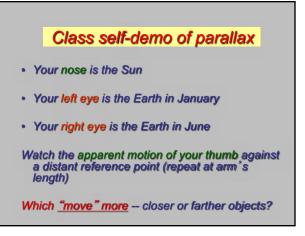

- Grade boundaries, based on 110 points (graded on a "curve"):
- If 96/110 (87%) <u>or over</u>, A's [37%]
- 86/110 (78%) or over, B's [43%]
- 77/110 (70%) or over, C's [16%]
- Also +, plain, and within these ranges

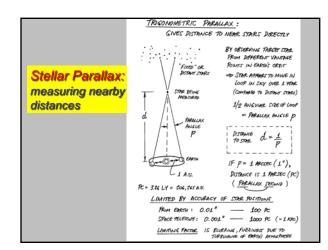

<u>Go through answer sheet</u> – and talk to us if do not understand our choices. Keep exam + answers for future review (comp final)

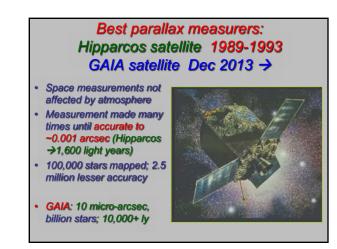
Clicker: What is net inward force on evacuated "oil barrel"?

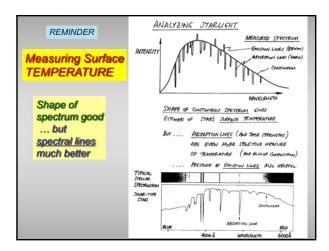
- A: 200 lbs
- B: 500 lbs
- C: 2,000 lbs
- D: 5,000 lbs
- E: 50,000 lbs

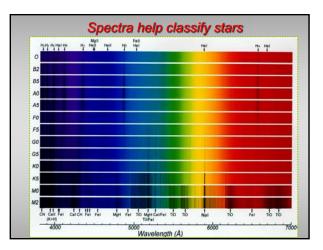


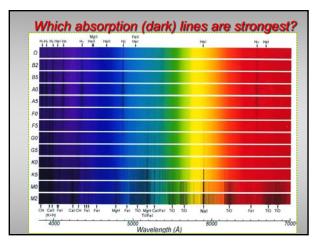


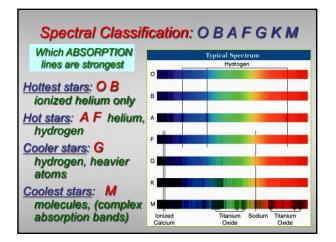

Parallax - to determine distance

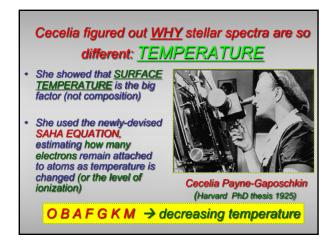

- o Measure the <u>apparent</u> <u>movement of stars</u> over a year
- Movement is caused by Earth's movement around the Sun
- o Closer objects will move more than farther objects

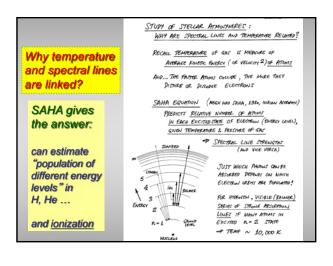


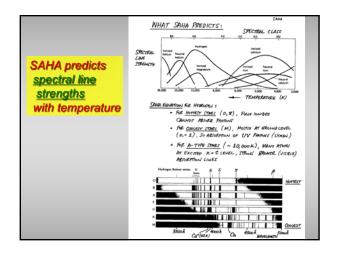


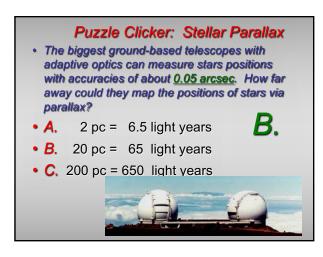


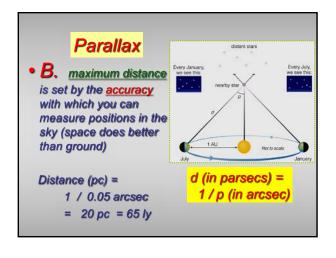


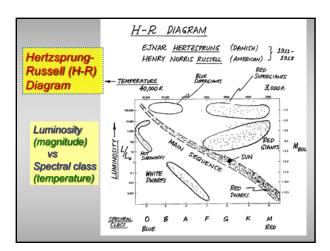


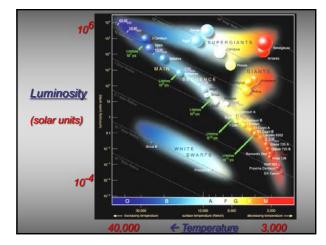


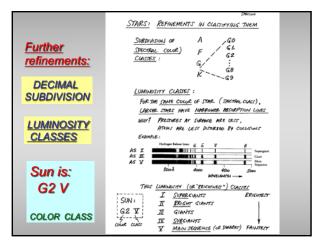


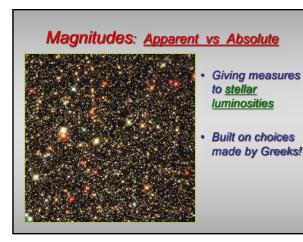


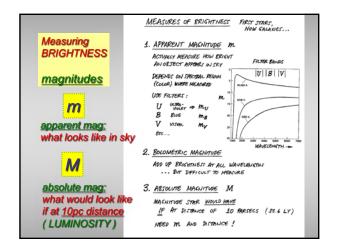












Stellar MAGNITUDES	MAGNITUDES : BLAME WERD SCALE ON GREEKS AND REPARE BY HERSONEL 1. <u>GREEKS ASSIGNED</u> <u>BRUKHEST</u> STAR MACHITURE 1 PATTERNE OF
MAGINITODES	FAUNTER TOBE VISIEE DE EVE MAG 6 55 MAGUNARY 2. <u>HERSCHEL CONCUDED</u> THIS WAS <u>REAT 100:1</u> IN ERICHTNESS
Weird system: brighter is smaller	ASSIGNED APPARENT MAGNITURE M _Y = O TO BRIGHT STARS VEGA AND RIGEL KENT
<u>magnitude</u> , even negative!	3. NOW THE PRESENT SYSTEM : BRIGHTNESS UP 1 BY FACTUR 2.512
Of <u>cultural</u> importance, even if a bit confusing (secret society!)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	MAGNITUDES: HANDY RESULTS TO RECALL			
(Slightly) screwy world of MAGNITUDES	5 MAGNITURES = <u>FACTOR OF 100</u> <u>IN BELGHTNESS</u> <u>MAGS.</u> CAN BE NEGATIVE	944 1 1 1 1 1	8.0 	7.3
IF can estimate <u>distance</u> , then can determine M given m		Appa M < M >	m	utts)
M = m if at distance 10pc	(/SUAL MAGUNYING C ⁴ "sublict" utpert Capital Bun Man All Infrant Registrant (Aller Caman) Registrant (Aller Caman) Regi	Apparent Magnitude (m.) -12.5 - 4.4 - 1.5 0.0 0.0 + 1.3 + 1.3 + 3.5	Datance 6/1 1.5 × 10 ⁻⁴ 4.0 × 10 ⁻⁴ 4.4 × 10 ⁻⁴ 8.8 4.3 25.0 1.6 × 10 ⁶ 1.9 2.25 × 10 ⁹	Absolute Magnitude (MJ) + 48 + 52.1 + 52.5 + 51.4 + 4.4 + 6.5 = 7.2 + 17.6 - 27.2

Clicker: Stellar puzzle **B**.

- Two stars, Antony and Cleopatra, are both of spectral class M3, and of the <u>same</u> apparent brightness (magnitude) in the sky. Cleopatra shows <u>narrow absorption</u> <u>lines</u> in her spectrum, Anthony <u>broad</u> ones. Which star must be far more distant?
- · A. Antony
- B. Cleopatra

MEASUREMENTS OF STARS: TEMPERATURE (FROM SPECTRAL LINES) Estimating BRIGHTNESS the size of > LUMINOS MY DISTANCE a star - its "NERLEY"STRES < 100 pc RADIUS RECAU STEFAN - BOLTZMANN LAW : $4\pi R^2 \times \sigma \times T^4$ L = Stefan-(TY Boltzmann -> LUMINOSITY & TEMP -> RADIUS BUT HOW TO GET THE MASS ? (TRICKIER : USE BINARIES)