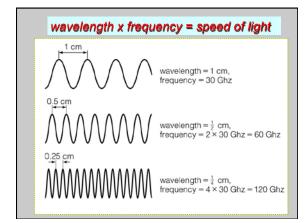
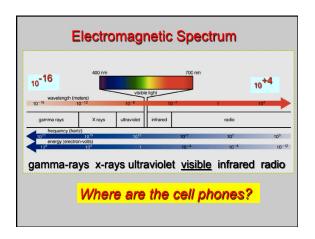


Topics for Today (and Tues)

- Basic principles of eyes, camera, telescopes
- · Nature of astronomical telescopes
- · What our atmosphere does to "light"
- Telescopes in space -- and why
- Tues: Our Nearest Star the Sun in overview
- Finish reviewing Chap 6 (Telescopes)
- · Begin reading Chap 14 (Our Star) in detail
- · Homework #2 passed out; Observ #1 tonight

Clicker Q: Radio Waves

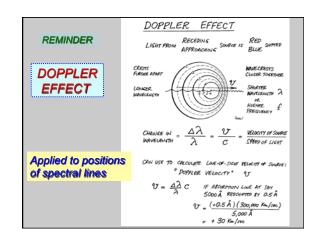

- You are listening to a radio station broadcasting at a FM frequency of 97 MHz. Which is true?
- A. The radio waves from the station have a wavelength of 97 million meters.
- B. The "radio waves" received by your radio are not light waves, but rather a special kind of sound wave.
- C. The radio station broadcasts it signal with a power of 97 million watts.
- D. The radio waves are causing electrons in your radio's antenna to move up and down 97 million times per second.


D. $c = \lambda \cdot f$

Radios

- You are listening to a radio station broadcasting at a frequency of 97 MHz. Which is true?
- D. The radio waves are causing electrons in your radio's antenna to move up and down 97 million times per second.

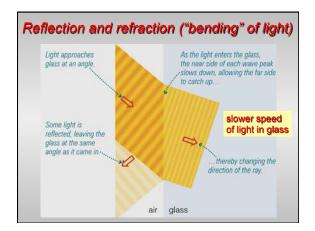
Wavelength = Speed of light / frequency = 3.0×10^{10} cm sec⁻¹ / 9.7 10^7 sec⁻¹ = 309 cm

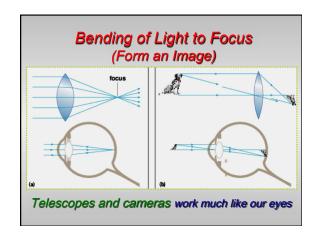


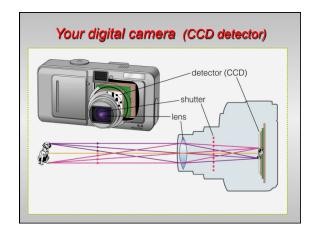
Discussion of CELL PHONE frequencies and wavelengths

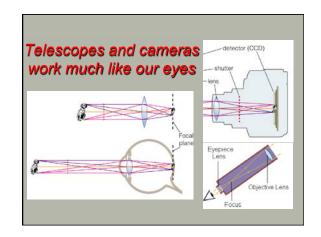
and what is involved with them

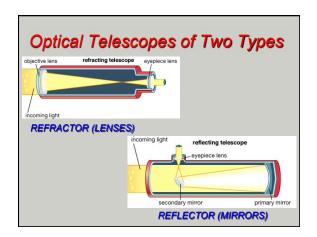
850 MHz 1850 MHz

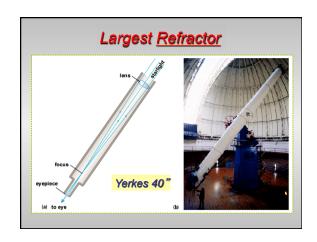

850 MHz:
Wavelength = Speed of light / frequency
= 3.0 x 10¹⁰ cm sec⁻¹ / 8.5 10⁸ sec⁻¹
= 35.3 cm 1850 MHz: 16.2 cm

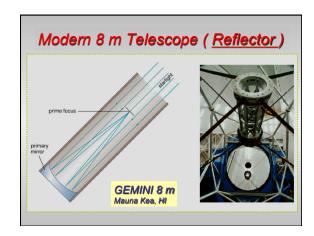


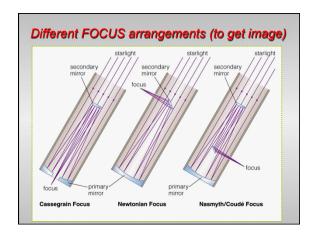

In what ways is an electron orbiting the nucleus of an atom different from a planet orbiting the Sun?


- A. The central force is electromagnetic (+ and charges attract), not gravity
- B. Not all orbits are allowed—only certain sizes (they are quantized)
- C. Because atomic orbits behave differently from "regular" orbits we call them orbitals
- D. An electron can jump or make a transition from one orbital to another
- E. All of the above

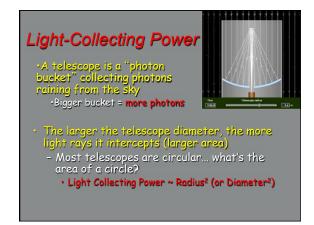

Imaging with our Eyes • pupil – allows light to enter the eye • lens – focuses light to create an image • retina – detects the light and generates signals sent to brain retina optic nerve to brain

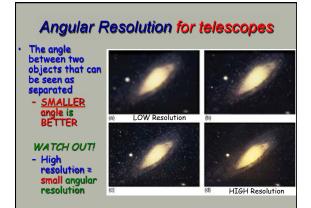


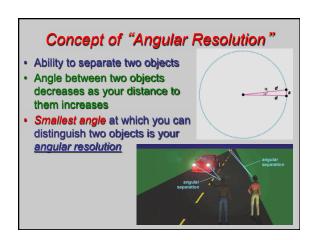




Discussion Topic


Why are most modern research telescopes REFLECTORS (using mirrors and not lenses)?


Why big aperture telescopes are reflectors


- Can <u>support mirror from back</u>, not just at edges as with lenses (biggest: 1 m lens, 10 m diam mirror)
- Mirror needs only one good optical surface to be ground, not four as with achromatic (2 elem) lens
- Can recoat mirror surface easily with highly reflective aluminum (even silver)
- Lens has to be <u>optically pure and uniform</u>, but mirror can be made of anything that holds its shape (fuzed quartz, zero expan pyroceramics, even beryllium)

Size DOES Matter!

- 1. Light-Collecting Power
- 2. Angular Resolution

Diffraction Limit Best angular resolution a telescope can get The diffraction limit is given by $\theta_{diff} \sim \lambda / D$ A is wavelength of light being observed D is mirror diameter Better (smaller) for shorter wavelengths or larger telescopes See Math Insight Box 6.1 & 6.2 for

How large an angle is an arcsecond?

• <u>1 arcsecond</u> is the angular separation of car headlights 200 miles away, or the diameter of a dime from 2.5 mile away

• The red dot above is about 100 arcseconds across (depending on where you are sitting)

• Hubble Space Telescope: 0.05 arcseconds = about 1/2000 of the above dot!